Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    DA-ViT: Deformable Attention Vision Transformer for Alzheimer’s Disease Classification from MRI Scans

    Abdullah G. M. Almansour1,*, Faisal Alshomrani2, Abdulaziz T. M. Almutairi3, Easa Alalwany4, Mohammed S. Alshuhri1, Hussein Alshaari5, Abdullah Alfahaid4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2395-2418, 2025, DOI:10.32604/cmes.2025.069661 - 31 August 2025

    Abstract The early and precise identification of Alzheimer’s Disease (AD) continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases. This study presents a novel Deformable Attention Vision Transformer (DA-ViT) architecture that integrates deformable Multi-Head Self-Attention (MHSA) with a Multi-Layer Perceptron (MLP) block for efficient classification of Alzheimer’s disease (AD) using Magnetic resonance imaging (MRI) scans. In contrast to traditional vision transformers, our deformable MHSA module preferentially concentrates on spatially pertinent patches through learned offset predictions, markedly diminishing processing demands while improving localized feature representation. DA-ViT contains only More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes

    Ziyang Wang1, Lian Duan1,2,*, Lei Kuang1, Haibo Zhou1, Ji’an Duan1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2587-2604, 2025, DOI:10.32604/cmc.2025.065648 - 03 July 2025

    Abstract The packaging quality of coaxial laser diodes (CLDs) plays a pivotal role in determining their optical performance and long-term reliability. As the core packaging process, high-precision laser welding requires precise control of process parameters to suppress optical power loss. However, the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise. To address this challenge, a physics-informed (PI) and data-driven collaboration approach for welding parameter optimization is proposed. First, thermal-fluid-solid coupling finite element method (FEM) was employed to quantify the sensitivity of welding parameters to physical characteristics, including… More >

  • Open Access

    ARTICLE

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

    Shengdong Cheng1, Juncheng Gao1,*, Hongning Qi2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 871-892, 2024, DOI:10.32604/cmes.2024.052830 - 20 August 2024

    Abstract Driven piles are used in many geological environments as a practical and convenient structural component. Hence, the determination of the drivability of piles is actually of great importance in complex geotechnical applications. Conventional methods of predicting pile drivability often rely on simplified physical models or empirical formulas, which may lack accuracy or applicability in complex geological conditions. Therefore, this study presents a practical machine learning approach, namely a Random Forest (RF) optimized by Bayesian Optimization (BO) and Particle Swarm Optimization (PSO), which not only enhances prediction accuracy but also better adapts to varying geological environments… More > Graphic Abstract

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

  • Open Access

    ARTICLE

    A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples

    Miao Li, Fanyong Cheng*, Jiong Yang, Maxwell Mensah Duodu, Hao Tu

    Energy Engineering, Vol.121, No.9, pp. 2543-2568, 2024, DOI:10.32604/ee.2024.051231 - 19 August 2024

    Abstract Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile, selecting parameters is critical to the detection performance, and empirical parameterization is generally time-consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    Research on Freezing of Gait Recognition Method Based on Variational Mode Decomposition

    Shoutao Li1,2,*, Ruyi Qu1, Yu Zhang1, Dingli Yu3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2809-2823, 2023, DOI:10.32604/iasc.2023.036999 - 11 September 2023

    Abstract Freezing of Gait (FOG) is the most common and disabling gait disorder in patients with Parkinson’s Disease (PD), which seriously affects the life quality and social function of patients. This paper proposes a FOG recognition method based on the Variational Mode Decomposition (VMD). Firstly, VMD instead of the traditional time-frequency analysis method to complete adaptive decomposition to the FOG signal. Secondly, to improve the accuracy and speed of the recognition algorithm, use the CART model as the base classifier and perform the feature dimension reduction. Then use the RUSBoost ensemble algorithm to solve the problem… More >

  • Open Access

    ARTICLE

    Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion

    Dan Zhang1, Yu Zhang2, Yiwen Liang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2317-2336, 2023, DOI:10.32604/cmc.2023.038026 - 30 August 2023

    Abstract The dendritic cell algorithm (DCA) is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system. Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA. The loss function of DCA is ambiguous due to its complexity. To reduce the uncertainty, several researchers simplified the algorithm program; some introduced gradient descent to optimize parameters; some utilized searching methods to find the optimal parameter combination. However, these studies are either time-consuming or need to be revised in the case of non-convex… More >

  • Open Access

    ARTICLE

    Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization

    Alawi Alqushaibi1,2,*, Mohd Hilmi Hasan1,2, Said Jadid Abdulkadir1,2, Amgad Muneer1,2, Mohammed Gamal1,2, Qasem Al-Tashi3, Shakirah Mohd Taib1,2, Hitham Alhussian1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3223-3238, 2023, DOI:10.32604/cmc.2023.035655 - 31 March 2023

    Abstract Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354 - 15 March 2023

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People.… More >

  • Open Access

    ARTICLE

    Breast Cancer Diagnosis Using Feature Selection Approaches and Bayesian Optimization

    Erkan Akkur1, Fuat TURK2,*, Osman Erogul1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1017-1031, 2023, DOI:10.32604/csse.2023.033003 - 03 November 2022

    Abstract Breast cancer seriously affects many women. If breast cancer is detected at an early stage, it may be cured. This paper proposes a novel classification model based improved machine learning algorithms for diagnosis of breast cancer at its initial stage. It has been used by combining feature selection and Bayesian optimization approaches to build improved machine learning models. Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Ensemble Learning and Decision Tree approaches were used as machine learning algorithms. All experiments were tested on two different datasets, which are Wisconsin Breast Cancer Dataset (WBCD) and Mammographic Breast… More >

Displaying 1-10 on page 1 of 14. Per Page