Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation

    Ömer Ekim Genel*, Hilal Koç, Ekrem Tüfekci

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2043-2059, 2025, DOI:10.32604/cmc.2025.060111 - 17 February 2025

    Abstract Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that… More >

  • Open Access

    REVIEW

    Plates, Beams and Shells Reinforced by CNTs or GPLs: A Review on Their Structural Behavior and Computational Methods

    Mohammad Javad Bayat1, Amin Kalhori2, Kamran Asemi1,*, Masoud Babaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1351-1458, 2025, DOI:10.32604/cmes.2025.060222 - 27 January 2025

    Abstract Since the initial observation of carbon nanotubes (CNTs) and graphene platelets (GPLs) in the 1990 and 2000s, the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs. Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures. To further improve efficiency and functionality, functionally graded (FG) distributions of CNTs and GPLs have been proposed. This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers. The… More >

  • Open Access

    ARTICLE

    Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test

    Yushan Ye1, Tao Gao1, Liankun Wang2, Junjie Ma2, Yingchun Cai2, Heng Liu2,*, Xiaoge Liu2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 145-166, 2025, DOI:10.32604/sdhm.2024.053756 - 15 November 2024

    Abstract To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams, destructive tests were conducted on full-scale pre-stressed concrete beams. Based on the measurement and analysis of beam deflection, strain, and crack development under various loading levels during the research tests, combined with the verification coefficient indicators specified in the codes, the verification coefficients of bridges at different stages of damage can be examined. The results indicate that the T-beams experience complete, incomplete linear, and… More >

  • Open Access

    PROCEEDINGS

    Bending Collapse of Easily Fabricated Single- and Multi-Cell Arched Beams

    Xiong Zhang1,2,*, Jinkang Xiong1, Xinrong Fu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011760

    Abstract Thin-walled beams are widely applied as energy-absorbing components in industrial products to meet the requirements of passive safety. Researchers have tried various approaches to improve the energy absorption efficiency of them. Recently, adopting arched beams was proposed by researchers to improve the crashworthiness of beams under transverse loads. Arched beams can switch the transverse forces to axial forces and were reported to show very much better crashworthiness performances than straight beams.
    Although adopting arched beams is an effective way to improve the performance of beams under transverse loads, the fabrication of arched beams is more… More >

  • Open Access

    PROCEEDINGS

    Theoretical Study on the Bending Collapse of Multi-Cell Thin-Walled Rectangular Beams

    Xinrong Fu1, Xiong Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011748

    Abstract Thin-walled beams with various cross-sectional shapes were widely applied in automobiles or other large-volume industrial products. Researchers have tried different methods to improve their crashworthiness performances and predict the collapse responses of the beams under various loads. Multi-cell thin-walled beams were reported to show excellent energy absorption efficiency and crashworthiness performances under many load conditions. Up to now, theoretical analyses on the axial crushing of multi-cell beams have attracted extensive attentions, and significant progress has been made in predicting the energy absorption of multi-cell beams with various sections. However, the theoretical analysis on the bending… More >

  • Open Access

    ARTICLE

    Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology

    Safwan Al-sayed, Xi Wang, Yijiang Peng*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4169-4195, 2024, DOI:10.32604/cmc.2024.048916 - 20 June 2024

    Abstract The mechanical properties and failure mechanism of lightweight aggregate concrete (LWAC) is a hot topic in the engineering field, and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field. In this study, the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete. Through the information extraction and processing of the section image of actual light aggregate concrete specimens, the mesostructural model of light aggregate concrete with real aggregate characteristics is established. The numerical simulation of uniaxial tensile test, uniaxial compression… More >

  • Open Access

    ARTICLE

    Identification of Damage in Steel‒Concrete Composite Beams Based on Wavelet Analysis and Deep Learning

    Chengpeng Zhang, Junfeng Shi*, Caiping Huang

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 465-483, 2024, DOI:10.32604/sdhm.2024.048705 - 05 June 2024

    Abstract In this paper, an intelligent damage detection approach is proposed for steel-concrete composite beams based on deep learning and wavelet analysis. To demonstrate the feasibility of this approach, first, following the guidelines provided by relevant standards, steel-concrete composite beams are designed, and six different damage incidents are established. Second, a steel ball is used for free-fall excitation on the surface of the steel-concrete composite beams and a low-temperature-sensitive quasi-distributed long-gauge fiber Bragg grating (FBG) strain sensor is used to obtain the strain signals of the steel-concrete composite beams with different damage types. To reduce the… More >

  • Open Access

    ARTICLE

    Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method

    Xiaojun Huang1, Liaojun Zhang2,*, Hanbo Cui1, Gaoxing Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1647-1668, 2024, DOI:10.32604/cmes.2024.049124 - 20 May 2024

    Abstract This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method (DQM) for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution. Firstly, based on the first-order shear deformation theory, the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement, transverse displacement, and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section. Then, ignoring the shear deformation of the… More >

  • Open Access

    ARTICLE

    Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams

    Qifeng Shan1,2, Ming Mao2, Yushun Li3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 149-166, 2024, DOI:10.32604/jrm.2023.029445 - 23 January 2024

    Abstract A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study. The deflection analysis considers the influences of interface slippage and shear deformation. Furthermore, the calculation model for flexural capacity is proposed considering the two stages of loading. The theoretical results are verified with 8 specimens considering different prestressed load levels, load schemes, and prestress schemes. The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams. For deflection analysis, the method considering the slippage and More >

  • Open Access

    PROCEEDINGS

    Statistic Structural Damage Detection Of Functionally Graded EulerBernoulli Beams Based on Element Modal Strain Energy Sensitivity

    Zhongming Hu1,*, Leilei Chen1, Delei Yang1, Jichao Zhang1, Youyang Xin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.09340

    Abstract Functionally graded materials (FGMs), a kind of composite materials, were proposed to satisfy the requirements of thermal barrier materials initially [1-3]. Compared with traditional composites, the microstructure and mechanical characteristics of FGMs change continuously which make them present excellent performance in deformation resistance or toughness under extreme mechanical and thermal loadings [4]. Therefore, FGMs have been paid much attention and experienced rapid developments in the last decade. Nowadays, various structural components manufactured by FGMs have been used in extensive applications, such as aerospace, bioengineering, nuclear industries, civil constructions etc. [5-7]
    While, FG Euler-Bernoulli beams maybe… More >

Displaying 1-10 on page 1 of 88. Per Page