Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ABSTRACT

    Preface: The First International Symposium on Biomechanics and Mechanobiology in Cardiovascular System

    Zhiyong Li1,2,*, Dalin Tang1,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-7, 2019, DOI:10.32604/mcb.2019.05830

    Abstract Cardiovascular disease remains as the leading cause of death worldwide, and the technologies developed by different groups need to be communicated and shared with all related research communities for a boarder implementation. Challenges in imaging technology, mathematical modelling, material description, mechanical representation, disease progression, prediction methods, and final transition to clinical applications are calling for collaborative effort of the entire research community to act together and bring research effort closer to actual clinical applications. Researchers from different disciplines need to reach out to share their expertise, as well as to listen to other people to understand the big picture, understand… More >

  • Open Access

    ARTICLE

    Generalized Stress Intensity Factors for Wedge-Shaped Defect in Human Tooth after Restored with Composite Resins

    Kyousuke Yamaguchi1, Nao-Aki Noda2, Ker-Kong Chen3, Kiyoshi Tajima3, Seiji Harada1, Xin Lan1

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 191-200, 2009, DOI:10.3970/sdhm.2009.005.191

    Abstract Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, a two-dimensional human tooth model after a wedge-shaped defect is restored with the composite resin is analyzed by using the finite element method. To obtain the intensity of the singular stress accurately, a method of analysis is discussed for calculating generalized stress intensity factors, which control the singular stress around the corner of… More >

  • Open Access

    ARTICLE

    Optimizing the Mechanical Stimulus in Culture to Improve Construct Biomechanics for Tendon Repair

    V. S. Nirmalanandhan1, J. T. Shearn1, N. Juncosa-Melvin1, M. Rao1, A. Jain1, C. Gooch1, D. L. Butler1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 131-134, 2006, DOI:10.32604/mcb.2006.003.131

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Preface: Innovations and Current Trends in Computational Cardiovascular Modeling and Beyond: Molecular, Cellular, Tissue and Organ Biomechanics with Clinical Applications

    Dalin Tang1,2,*, Zhiyong Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 109-113, 2018, DOI:10.31614/cmes.2018.04201

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The… More >

  • Open Access

    ARTICLE

    Remodeling of Strain Energy Function of Common Bile Duct post Obstruction

    Quang Dang1,1, Hans Gregersen2,2, Birgitte Duch2,2, Ghassan S. Kassab1,1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 53-62, 2005, DOI:10.3970/mcb.2005.002.053

    Abstract Biliary duct obstruction is an important clinical condition that affects millions of people worldwide. We have previously shown that the common bile duct (CBD) undergoes significant growth and remodelling post obstruction. The mechanical stress-strain relation is expected to change due to growth and remodeling in response to obstruction and hence pressure-overload. The objective of the present study was to characterize the material properties of the CBD of the sham group and at 3 hours, 12 hours, 2 days, 8 days and 32 days (n=5 in each group) after obstruction. The Fung's exponential strain energy function was used to relate stress… More >

  • Open Access

    ARTICLE

    Y.C. "Bert'' Fung: The Father of Modern Biomechanics

    Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 5-22, 2004, DOI:10.3970/mcb.2004.001.005

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Method for Estimating Relative Bone Loads from CT Data with Application to the Radius and the Ulna

    K.J. Fischer1,2, J.A. Bastidas3, H.J. Pfaeffle2, J.D. Towers2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 397-404, 2003, DOI:10.3970/cmes.2003.004.397

    Abstract The two bones of the forearm, the radius and the ulna, have been shown to bear different proportions of the overall forearm load at the wrist and the elbow. This biomechanical data suggests load transfer between the bones occurs through the soft tissues of the forearm. Load transfer from radius to ulna through passive soft tissues such as the interosseous ligament (IOL) has been experimentally measured. Ex vivo studies of the forearm, however, cannot account for the effect of internal loads generated by the muscles and, in some cases, external forces acting directly on the forearm bones. The objective of… More >

  • Open Access

    EDITORIAL

    Biomechanics: A Current Perspective

    Angelo Carini1, Riccardo Pietrabissa2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 345-350, 2003, DOI:10.3970/cmes.2003.004.345

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Meshless Methods in Computational Biomechanics for Medicine

    Karol Miller

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 188-188, 2019, DOI:10.32604/icces.2019.06116

    Abstract The field of Biomechanics is in the most exiting state of transition from the theoretical subject of the 20th century to a practical discipline providing patient-specific solutions in the 21st century. Computational biomechanics is becoming instrumental in enabling a new era of personalized medicine based on patient-specific scientific computations. The Finite Element Method is used by almost all members of computational biomechanics community to analyze mathematical models described by sets of partial differential equations. FEM, however, has a number of fairly serious theoretical and practical deficiencies when applied to highly deformable objects of very complicated shapes, such as human soft… More >

Displaying 31-40 on page 4 of 66. Per Page