Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ABSTRACT

    A Preliminary Design on the Second Generation Integral Twist-Actuated Blade

    Jae-Sang Park1, SangJoon Shin2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.4, pp. 265-270, 2007, DOI:10.3970/icces.2007.004.265

    Abstract This paper presents the preliminary design effort of a brand new integral twist-actuated blade incorporating single crystal piezoelectric fiber composites. Although the previous integral twist-actuated blade was able to reduce the vibration and acoustic noise of rotorcrafts significantly, a quite high input-voltage was unavoidably required. Therefore, in this paper, it is suggested to develop a new active blade using single crystal piezoelectric composites to reduce the vibration and acoustic noise of helicopters more efficiently. For the preliminary design of a new blade, the characteristics of the sectional properties and the twist actuation frequency responses in hover are investigated in terms… More >

  • Open Access

    ABSTRACT

    Aeroelasticity analysis of wind turbine blades based on CFD-CSD coupling

    Wei Liu1, Yiwei Wang1, Yiran An1, Xianyue Su1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.1, pp. 27-28, 2009, DOI:10.3970/icces.2009.010.027

    Abstract Understanding the aeroelastic behavior of the blade is crucial to the design of large wind turbines, which has been attracting more and more research efforts. Essentially, the aeroelasticity problem of wind turbine blades is a fluid-solid interaction problem with obvious interface. At the present time, in the aeroelasticity analysis of wind turbine, CFD software based on the incompressible Reynolds-averaged Navier-Stokes (RANS) equations are not yet routinely used , in part because of the lack of experience with regard to the application of these software to various wind turbine rotors for a wide range of conditions and the complexity of the… More >

  • Open Access

    ARTICLE

    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The models are built based on… More >

  • Open Access

    ARTICLE

    A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 69-90, 2017, DOI:10.3970/sdhm.2017.012.069

    Abstract Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger, creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead to catastrophic damage to the… More >

  • Open Access

    ARTICLE

    Local Buckling Prediction for Large Wind Turbine Blades

    W. Liu, X. Y. Su, Y. R. An, K. F. Huang1

    CMC-Computers, Materials & Continua, Vol.25, No.2, pp. 177-194, 2011, DOI:10.3970/cmc.2011.025.177

    Abstract Local buckling is a typical failure mode of large scale composite wind turbine blades. A procedure for predicting the onset and location of local buckling of composite wind turbine blades under aerodynamic loads is proposed in this paper. This procedure is distinct from its counterparts in adopting the pressure distributions obtained from Computational Fluid Dynamics (CFD) calculations as the loads. The finite element method is employed to investigate local buckling resistance of the composite blade. To address the mismatch between the unstructured CFD grids of the blade surface and the finite shell elements used during the buckling analysis, an interpolation… More >

  • Open Access

    ARTICLE

    Directional Cohesive Elements for the Simulation of Blade Cutting of Thin Shells

    A. Frangi1, M. Pagani1, U. Perego1, R. Borsari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 205-224, 2010, DOI:10.3970/cmes.2010.057.205

    Abstract This paper is concerned with the finite element simulation of a thin membrane cutting by a sharp blade. Smeared crack finite element approaches appear to be unsuitable for this purpose, since very small elements would be required to conform to the sharp edge of the cutter. Furthermore, when the membrane material is very ductile, classical interface cohesive elements, where the cohesive forces are transmitted in the direction of the crack opening displacement, cannot correctly reproduce situations where the blade crosses the process zone. A simplified approach, based on the new concept of "directional" cohesive elements, is here proposed for a… More >

  • Open Access

    ARTICLE

    Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics

    Jyoti Ranjan Majhi, Ranjan Ganguli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 25-36, 2008, DOI:10.3970/cmes.2008.027.025

    Abstract The flapping equation for a rotating rigid helicopter blade is typically derived by considering 1) small flap angle, 2) small induced angle of attack and 3) linear aerodynamics. However, the use of nonlinear aerodynamics can make the assumptions of small angles suspect. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived in this paper with nonlinear aerodynamics . Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that… More >

  • Open Access

    ARTICLE

    Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind Power Turbine

    Shueei-Muh Lin1, Sen-Yung Lee2, Yu-Sheng Lin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.3, pp. 175-186, 2008, DOI:10.3970/cmes.2008.023.175

    Abstract The blade of a horizontal-axis wind power turbine is modeled as a rotating beam with pre-cone angles and setting angles. Based on the Bernoulli-Euler beam theory, without considering the axial extension deformation and the Coriolis forces effect, the governing differential equations for the bending vibration of the beam are derived. It is pointed out that if the geometric and the material properties of the beam are in polynomial forms, then the exact solution for the system can be obtained. Based on the frequency relations as revealed, without tedious numerical analysis, one can reach many general qualitative conclusions between the natural… More >

  • Open Access

    ARTICLE

    A Practical Engineering Approach to the Design and Manufacturing of a mini kW BladeWind Turbine: Definition, optimization and CFD Analysis

    G. Frulla1, P. Gili1, M. Visone2, V. D’Oriano2,3, M. Lappa4

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 257-277, 2015, DOI:10.3970/fdmp.2015.011.257

    Abstract A practical engineering approach to the design of a 60 kW wind generator with improved performances is presented. The proposed approach relies on the use of a specific, "ad hoc'' developed software, OPTIWR (Optimization Software), expressly conceived to define an "optimum'' rotor configuration in the framework of the blade-element-momentum theory. Starting from an initial input geometric configuration (corresponding to an already existing 50 kW turbine) and for given values of the wind velocity Vwind and of the advance ratio X = Vwind/ΩR (where Ω is the blade rotational speed and R is the propeller radius), this software is used to… More >

Displaying 51-60 on page 6 of 59. Per Page