Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (78)
  • Open Access

    ARTICLE

    Research on the Change of Airfoil Geometric Parameters of Horizontal Axis Wind Turbine Blades Caused by Atmospheric Icing

    Xiyang Li1, Yuhao Jia2, Hui Zhang1,*, Bin Cheng1

    Energy Engineering, Vol.119, No.6, pp. 2549-2567, 2022, DOI:10.32604/ee.2022.020854 - 14 September 2022

    Abstract Icing can significantly change the geometric parameters of wind turbine blades, which in turn, can reduce the aerodynamic characteristics of the airfoil. In-depth research is conducted in this study to identify the reasons for the decline of wind power equipment performance through the icing process. An accurate experimental test method is proposed in a natural environment that examines the growth and distribution of ice formation over the airfoil profile. The mathematical models of the airfoil chord length, camber, and thickness are established in order to investigate the variation of geometric airfoil parameters under different icing… More >

  • Open Access

    ARTICLE

    An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades

    Guanhua Wang1, Jinghua Wang1, Xuemei Huang1,*, Leian Zhang1, Weisheng Liu2

    Energy Engineering, Vol.119, No.4, pp. 1649-1662, 2022, DOI:10.32604/ee.2022.019695 - 23 May 2022

    Abstract A new dual-actuator fatigue loading system of wind turbine blades was designed. Compared with the traditional pendulum loading mode, the masses in this system only moved linearly along the loading direction to increase the exciting force. However, the two actuators and the blade constituted a complicated non-linear energy transferring system, which led to the non-synchronization of actuators. On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually. A cross-coupled control strategy based on the active disturbance rejection algorithm was… More >

  • Open Access

    ARTICLE

    Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

    Shuang Zhao1,2,3, Xijun Li4, Jianwen Wang1,2,3,*

    Energy Engineering, Vol.119, No.4, pp. 1379-1392, 2022, DOI:10.32604/ee.2022.019776 - 23 May 2022

    Abstract The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°, 15°, 30°, and 45°. The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method. By analyzing the pressure distribution and the flow characteristics of the blade surface, the flow mechanism of the blade surface in the yawed condition was discussed. The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle… More >

  • Open Access

    ARTICLE

    Optimization of the Structural Parameters of a Plastic Centrifugal Pump in the Framework of a Flow Field Analysis

    Wenbin Luo1,*, Youmin Wang1, Yuting Yan2, Yifang Shi1, Zhendong Zhang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 789-813, 2022, DOI:10.32604/fdmp.2022.019691 - 22 February 2022

    Abstract In order to determine the optimal structural parameters of a plastic centrifugal pump in the framework of an orthogonal-experiment approach, a numerical study of the related flow field has been performed using CFX. The thickness S, outlet angle β2, inlet angle β1, wrap angle, and inlet diameter D1 of the splitter blades have been considered as the variable factors, using the shaft power and efficiency of the pump as evaluation indices. Through a parametric analysis, the relative importance of the influence of each structural parameter on each evaluation index has been obtained, leading to the More >

  • Open Access

    ARTICLE

    Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

    Jinghua Wang1, Leian Zhang1, Xuemei Huang1,*, Jinfeng Zhang2, Chengwei Yuan1

    Energy Engineering, Vol.119, No.1, pp. 407-418, 2022, DOI:10.32604/EE.2022.016439 - 22 November 2021

    Abstract Transverse crack often occurs in the trailing edge region of the blade when subjected to the excessive edgewise fatigue load. In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge. The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory. The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test. Compared with More >

  • Open Access

    ARTICLE

    A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines

    Xiyang Li1,2, Bin Cheng1,2, Hui Zhang1,2,*, Xianghan Zhang1, Zhi Yun1

    Energy Engineering, Vol.118, No.6, pp. 1869-1886, 2021, DOI:10.32604/EE.2021.015542 - 10 September 2021

    Abstract With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation More >

  • Open Access

    ARTICLE

    Numerical Study on the Blade Channel Vorticity in a Francis Turbine

    Zhiqi Zhou*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1091-1100, 2021, DOI:10.32604/fdmp.2021.016618 - 08 September 2021

    Abstract A relevant way to promote the sustainable development of energy is to use hydropower. Related systems heavily rely on the use of turbines, which require careful analysis and optimization. In the present study a mixed experimental-numerical approach is implemented to investigate the related mixed water flow. In particular, particle image velocimetry (PIV) is initially used to verify the effectiveness of the numerical model. Then numerical results are produced for various conditions. It is shown that an increase in the guide vane opening can reduce the extension of the region where the fluid velocity is 0 More >

  • Open Access

    ARTICLE

    Multi-Scale Superhydrophobic Anti-Icing Coating for Wind Turbine Blades

    Jiangyong Bao1, Jianjun He1,*, Biao Chen2, Kaijun Yang1, Jun Jie2, Ruifeng Wang1, Shihao Zhang2

    Energy Engineering, Vol.118, No.4, pp. 947-959, 2021, DOI:10.32604/EE.2021.014535 - 31 May 2021

    Abstract As a surface functional material, super-hydrophobic coating has great application potential in wind turbine blade anti-icing, self-cleaning and drag reduction. In this study, ZnO and SiO2 multi-scale superhydrophobic coatings with mechanical flexibility were prepared by embedding modified ZnO and SiO2 nanoparticles in PDMS. The prepared coating has a higher static water contact angle (CA is 153°) and a lower rolling angle (SA is 3.3°), showing excellent super-hydrophobicity. Because of its excellent superhydrophobic ability and micro-nano structure, the coating has good anti-icing ability. Under the conditions of −10°C and 60% relative humidity, the coating can delay the More >

  • Open Access

    ARTICLE

    Numerical Investigation on the Secondary Flow Control by Using Splitters at Different Positions with Respect to the Main Blade

    Tao Bian1, Xin Shen2, Jun Feng1, Bing Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 615-628, 2021, DOI:10.32604/fdmp.2021.014902 - 29 April 2021

    Abstract In turbomachinery, strong secondary flow can produce significant losses of total pressure near the endwall and reduce the efficiency of the considered turbomachine. In this study, splitters located at different positions with respect to the main blade have been used to reduce such losses and improve the efficiency of the outlet guide vane (OGV). Three different relative positions have been considered assuming a NACA 65-010 profile for both the main blade and the splitter. The numerical results indicate that splitters can effectively reduce the total pressure loss by suppressing the secondary flow around the main More >

  • Open Access

    ARTICLE

    Kriging Surrogate-Based Genetic Algorithm Optimization for Blade Design of a Horizontal Axis Wind Turbine

    Nantiwat Pholdee1, Sujin Bureerat1, Weerapon Nuantong2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 261-273, 2021, DOI:10.32604/cmes.2021.012349 - 22 December 2020

    Abstract Horizontal axis wind turbines are some of the most widely used clean energy generators in the world. Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultaneously minimize the cost of energy. This work presents the optimization of new MEXICO blades for a horizontal axis wind turbine at the wind speed of 10 m/s. The optimization problem is posed to maximize the power coefficient while the design variables are twist angles on the blade radius and rotating axis positions on a chord length of the airfoils. Computational… More >

Displaying 41-50 on page 5 of 78. Per Page