Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    Displacement Field Variable Modeling Method for Heterogeneous Materials in Wind Power Blade Core Plates

    Ying He, Yongshuang Wen*, Xuemei Huang, Leian Zhang, Rujun Song, Chang Li

    Energy Engineering, Vol.120, No.2, pp. 445-459, 2023, DOI:10.32604/ee.2022.022223

    Abstract In order to study the mechanical properties of the heterogeneous core plate of the wind turbine blade, a modeling method of the core plate based on displacement field variables is proposed. Firstly, the wind turbine blade core plate was modeled according to the theory of modeling heterogeneous material characteristics. Secondly, the three-point bending finite element model of the wind turbine blade core plate was solved by the display dynamic equation to obtain the deformation pattern and force-deformation relationship of the core plate. Finally, the three-point bending static test was conducted to compare with the finite element analysis. The test results… More >

  • Open Access

    ARTICLE

    Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator

    Hong Zhang1, Lukai Song1,2,*, Guangchen Bai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1871-1897, 2023, DOI:10.32604/cmes.2022.021880

    Abstract

    The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like high-nonlinearity, multi-failure regions, and small failure probability, which brings in unacceptable computing efficiency and accuracy of the current analysis methods. In this case, by fitting the implicit limit state function (LSF) with active Kriging (AK) model and reducing candidate sample pool with adaptive importance sampling (AIS), a novel AK-AIS method is proposed. Herein, the AK model and Markov chain Monte Carlo (MCMC) are first established to identify the most probable failure region(s) (MPFRs), and the adaptive kernel density estimation (AKDE) importance sampling function is constructed to… More >

  • Open Access

    ARTICLE

    Research on the Change of Airfoil Geometric Parameters of Horizontal Axis Wind Turbine Blades Caused by Atmospheric Icing

    Xiyang Li1, Yuhao Jia2, Hui Zhang1,*, Bin Cheng1

    Energy Engineering, Vol.119, No.6, pp. 2549-2567, 2022, DOI:10.32604/ee.2022.020854

    Abstract Icing can significantly change the geometric parameters of wind turbine blades, which in turn, can reduce the aerodynamic characteristics of the airfoil. In-depth research is conducted in this study to identify the reasons for the decline of wind power equipment performance through the icing process. An accurate experimental test method is proposed in a natural environment that examines the growth and distribution of ice formation over the airfoil profile. The mathematical models of the airfoil chord length, camber, and thickness are established in order to investigate the variation of geometric airfoil parameters under different icing states. The results show that… More >

  • Open Access

    ARTICLE

    Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method

    Linchuan Liu1, Jian Wu2, Zhongwei Hu2, Xiaochao Jin1,*, Pin Lu1, Tao Zhang2, Xueling Fan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1219-1236, 2023, DOI:10.32604/cmes.2022.022221

    Abstract A virtual wall thickness method is developed to simulate the temperature field of turbine blades with thermal barrier coatings (TBCs), to simplify the modeling process and improve the calculation efficiency. The results show that the virtual wall thickness method can improve the mesh quality by 20%, reduce the number of meshes by 76.7% and save the calculation time by 35.5%, compared with the traditional real wall thickness method. The average calculation error of the two methods is between 0.21% and 0.93%. Furthermore, the temperature at the blade leading edge is the highest and the average temperature of the blade pressure… More >

  • Open Access

    ARTICLE

    Detecting Icing on the Blades of a Wind Turbine Using a Deep Neural Network

    Tingshun Li1, Jiaohui Xu1,*, Zesan Liu2, Dadi Wang2, Wen Tan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 767-782, 2023, DOI:10.32604/cmes.2022.020702

    Abstract The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter, where this affects their capacity for power generation as well as their safety. Accurately identifying the icing of the blades of wind turbines in remote areas is thus important, and a general model is needed to this end. This paper proposes a universal model based on a Deep Neural Network (DNN) that uses data from the Supervisory Control and Data Acquisition (SCADA) system. Two datasets from SCADA are first preprocessed through undersampling, that is, they are labeled, normalized, and balanced. The… More >

  • Open Access

    ARTICLE

    An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades

    Guanhua Wang1, Jinghua Wang1, Xuemei Huang1,*, Leian Zhang1, Weisheng Liu2

    Energy Engineering, Vol.119, No.4, pp. 1649-1662, 2022, DOI:10.32604/ee.2022.019695

    Abstract A new dual-actuator fatigue loading system of wind turbine blades was designed. Compared with the traditional pendulum loading mode, the masses in this system only moved linearly along the loading direction to increase the exciting force. However, the two actuators and the blade constituted a complicated non-linear energy transferring system, which led to the non-synchronization of actuators. On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually. A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed. Firstly, a control system… More >

  • Open Access

    ARTICLE

    Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

    Shuang Zhao1,2,3, Xijun Li4, Jianwen Wang1,2,3,*

    Energy Engineering, Vol.119, No.4, pp. 1379-1392, 2022, DOI:10.32604/ee.2022.019776

    Abstract The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°, 15°, 30°, and 45°. The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method. By analyzing the pressure distribution and the flow characteristics of the blade surface, the flow mechanism of the blade surface in the yawed condition was discussed. The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the… More >

  • Open Access

    ARTICLE

    Optimization of the Structural Parameters of a Plastic Centrifugal Pump in the Framework of a Flow Field Analysis

    Wenbin Luo1,*, Youmin Wang1, Yuting Yan2, Yifang Shi1, Zhendong Zhang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 789-813, 2022, DOI:10.32604/fdmp.2022.019691

    Abstract In order to determine the optimal structural parameters of a plastic centrifugal pump in the framework of an orthogonal-experiment approach, a numerical study of the related flow field has been performed using CFX. The thickness S, outlet angle β2, inlet angle β1, wrap angle, and inlet diameter D1 of the splitter blades have been considered as the variable factors, using the shaft power and efficiency of the pump as evaluation indices. Through a parametric analysis, the relative importance of the influence of each structural parameter on each evaluation index has been obtained, leading to the following combinations: β1 19°, β2… More >

  • Open Access

    ARTICLE

    Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

    Jinghua Wang1, Leian Zhang1, Xuemei Huang1,*, Jinfeng Zhang2, Chengwei Yuan1

    Energy Engineering, Vol.119, No.1, pp. 407-418, 2022, DOI:10.32604/EE.2022.016439

    Abstract Transverse crack often occurs in the trailing edge region of the blade when subjected to the excessive edgewise fatigue load. In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge. The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory. The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test. Compared with the laminate, the lower fatigue… More >

  • Open Access

    ARTICLE

    A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines

    Xiyang Li1,2, Bin Cheng1,2, Hui Zhang1,2,*, Xianghan Zhang1, Zhi Yun1

    Energy Engineering, Vol.118, No.6, pp. 1869-1886, 2021, DOI:10.32604/EE.2021.015542

    Abstract With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation neural network (BPNN), with the… More >

Displaying 21-30 on page 3 of 59. Per Page