Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    REVIEW

    A Review of Wind Turbine Blade Morphing: Power, Vibration, and Noise

    Md. Mahbub Alam*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 657-695, 2025, DOI:10.32604/fdmp.2025.060942 - 06 May 2025

    Abstract Wind turbines play a vital role in renewable energy production. This review examines advancements in wind turbine blade morphing technologies aimed at enhancing power coefficients, reducing vibrations, and minimizing noise generation. Efficiency, vibration, and noise levels can be optimized through morphing techniques applied to the blade’s shape, leading edge, trailing edge, and surface. Leading-edge morphing is particularly effective in improving efficiency and reducing noise, as flow attachment and separation at the leading edge significantly influence lift and vortex generation. Morphing technologies often draw inspiration from bionic designs based on natural phenomena, highlighting the potential of More > Graphic Abstract

    A Review of Wind Turbine Blade Morphing: Power, Vibration, and Noise

  • Open Access

    ARTICLE

    Blade Cutting Influence on Centrifugal Pump Noise Reduction

    Tianpeng Li1,*, Yujun Duan2, Qianghu Ji3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 623-644, 2025, DOI:10.32604/fdmp.2024.053862 - 01 April 2025

    Abstract A centrifugal pump with a specific speed ns = 67 is considered in this study to investigate the impact of blade cutting (at the outlet edge) on the fluid-induced noise, while keeping all the other geometric parameters unchanged. The required unsteady numerical calculations are conducted by applying the RNG k-ε turbulence model with the volute dipole being used as the sound source. The results indicate that the internal pressure energy of the centrifugal pump essentially depends on the blade passing frequency and its low-frequency harmonic frequency. Moreover, the pressure pulsation distribution directly affects the noise caused More >

  • Open Access

    REVIEW

    Wind Turbine Composite Blades: A Critical Review of Aeroelastic Modeling and Vibration Control

    Tingrui Liu1, Qinghu Cui1,2, Dan Xu1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 1-36, 2025, DOI:10.32604/fdmp.2024.058444 - 24 January 2025

    Abstract With the gradual increase in the size and flexibility of composite blades in large wind turbines, problems related to aeroelastic instability and blade vibration are becoming increasingly more important. Given their impact on the lifespan of wind turbines, these subjects have become important topics in turbine blade design. In this article, first aspects related to the aeroelastic (structural and aerodynamic) modeling of large wind turbine blades are summarized. Then, two main methods for blade vibration control are outlined (passive control and active control), including the case of composite blades. Some improvement schemes are proposed More > Graphic Abstract

    Wind Turbine Composite Blades: A Critical Review of Aeroelastic Modeling and Vibration Control

  • Open Access

    ARTICLE

    Aerodynamic Noise Distribution in Wind Turbines with Different Microporous Blade Tip Structures

    Baohua Li, Yi Ye, Yuanjun Dai*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2809-2842, 2024, DOI:10.32604/fdmp.2024.054011 - 23 December 2024

    Abstract A linear microporous blade tip structure is designed in order to reduce the aerodynamic noise of a wind turbine during operations. Various structures of such a kind are considered and the related aerodynamic noise is determined in the framework of large vortex simulation and acoustic array test methods. The findings demonstrate that various blade tip designs can enhance the vortex trajectory in the tip region and lessen the pressure differential between the blade’s upper and lower surfaces. In particular, the wind turbine’s maximum linear velocity at the blade tip can be increased by 10%–23% while More > Graphic Abstract

    Aerodynamic Noise Distribution in Wind Turbines with Different Microporous Blade Tip Structures

  • Open Access

    ARTICLE

    Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network

    Jianyong Ao1, Yanping Li1, Shengqing Hu1, Songyu Gao2, Qi Yao2,*

    Energy Engineering, Vol.121, No.12, pp. 3825-3841, 2024, DOI:10.32604/ee.2024.055250 - 22 November 2024

    Abstract Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem, this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the generation mechanism of blade loads and the load theoretical calculation method based on material damage theory are analyzed, and four measurable operating state parameters related to blade loads are… More >

  • Open Access

    PROCEEDINGS

    Investigation of Flutter Mechanism in Transonic Rotor Blades with Structural Damage via SPOD Method

    Chunxiu Ji1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012592

    Abstract The persistence of accidents attributed to structural damage in traditional rotor blades remains a pressing concern for aeronautical experts. Given the infrequency of flutter in undamaged blades, this study directs its attention to a rotor blade afflicted with structural damage, with a primary objective of discerning flutter occurrences, elucidating underlying mechanisms, and scrutinizing resultant aeroelastic responses. This paper presents an investigation into the flutter mechanism observed in transonic rotor blades subjected to structural damage, employing the Spectral Proper Orthogonal Decomposition(SPOD) method. The study aims to understand the dynamics of flutter under the influence of structural More >

  • Open Access

    ARTICLE

    Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage

    Fengxia Shi1,2, Guangbiao Zhao1,*, Yucai Tang1, Dedong Ma1, Xiangyun Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2617-2636, 2024, DOI:10.32604/fdmp.2024.053186 - 28 October 2024

    Abstract To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which the flow rate is not constant, six hydraulic turbines with different blade numbers are considered. The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software. The ensuing results are compared with the outcomes of experimental tests. It is shown that the fluctuation range of the pressure coefficient increases with time, but the corresponding range for the transient hydraulic efficiency decreases gradually when… More >

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

    Zhan Wang1, Liang Li2,*, Long Wang1, Weidong Zhu3, Yinghui Li4, Echuan Yang5

    Energy Engineering, Vol.121, No.10, pp. 2981-3000, 2024, DOI:10.32604/ee.2024.048161 - 11 September 2024

    Abstract A dynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of a wind turbine. The dynamic pitch motion will affect the linear vibration characteristics of the blade. However, these influences have not been studied in previous research. In this paper, the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied. The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration, where the rigid pitch motion introduces a parametrically excited vibration to the beam. Partial differential equations More > Graphic Abstract

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

Displaying 1-10 on page 1 of 77. Per Page