Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Strain Transfer Mechanism of Grating Ends Fiber Bragg Grating for Structural Health Monitoring

    Guang Chen1,*, Keqin Ding1, Qibo Feng2, Xinran Yin1, Fangxiong Tang1

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 289-301, 2019, DOI:10.32604/sdhm.2019.05144

    Abstract The grating ends bonding fiber Bragg grating (FBG) sensor has been widely used in sensor packages such as substrate type and clamp type for health monitoring of large structures. However, owing to the shear deformation of the adhesive layer of FBG, the strain measured by FBG is often different from the strain of actual matrix, which causes strain measurement errors. This investigation aims at improving the measurement accuracy of strain for the grating ends surface-bonded FBG. To fulfill this objective, a strain transfer equation of the grating ends bonding FBG is derived, and a theoretical model of the average strain… More >

  • Open Access

    ARTICLE

    Bonding Geometry and Bandgap Changes of Carbon Nanotubes Under Uniaxial and Torsional Strain

    Liu Yang1, Jie Han, M. P. Anantram, Richard L. Jaffe

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 675-686, 2002, DOI:10.3970/cmes.2002.003.675

    Abstract Bonding geometry and bandgap of carbon nantotubes under uniaxial and torsional deformation are studied computationally for nanotubes of various chiralities and diameters. Bonding geometries are obtained with Tersoff-Brenner potential from molecular mechanics simulations. Bandgaps as function of strain are calculated from the molecular mechanics structures using one (p) and four (2s and 2px, 2py, 2pz) orbital tight-binding models. For small strains, the bandgap results are qualitatively consistent with those predicted by the one orbital analytical model. Response of the electronic properties of nanotubes to large strains is characterized by a change in sign of d(bandgap)/d(strain). These originate from either quantum… More >

  • Open Access

    ARTICLE

    Supramolecular Design of Cellulose Hydrogel Beads

    Poonam Trivedi1, Jens Schaller2, Jan Gustafsson1, Pedro Fardim1,3*

    Journal of Renewable Materials, Vol.5, No.5, pp. 400-409, 2017, DOI:10.7569/JRM.2017.634143

    Abstract In the present study, we report the supramolecular design of cellulose-sulfonate hydrogel beads by blending water soluble sodium cellulose ethyl sulfonate (CES) with the pretreated cellulose in sodium hydroxide-ureawater solvent system at −6 °C followed by coagulation in the 2M sulfuric acid system. The increasing of CES amount from 10% to 90% had a substantial effect on the viscosity and storage (G′) and loss (G″) moduli of the blended solutions. The CES concentration up to 50% in blends led to the formation of physically stable hydrogels after coagulation in acidic medium at pH-1 and showed the retention of nearly the… More >

  • Open Access

    ARTICLE

    Bending and Rolling Shear Properties of Cross-Laminated Timber Fabricated with Canadian Hemlock

    Gengmu Ruan1, Haibei Xiong1,*, Jiawei Chen1

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 227-246, 2019, DOI:10.32604/sdhm.2019.04743

    Abstract In this paper, bending performance and rolling shear properties of cross-laminated timber (CLT) panels made from Canadian hemlock were investigated by varied approaches. Firstly, three groups of bending tests of three-layer CLT panels with different spans were carried out. Different failure modes were obtained: bending failure, rolling shear failure, bonding line failure, local failure of the outer layer and mixed failure mode. Deflection and strain measurements were employed to calculate the global and local modulus of elastic (MOE), compared with the theoretical value. In addition, a modified compression shear testing method was introduced to evaluate the rolling shear strength and… More >

  • Open Access

    ARTICLE

    Modeling of Particle Debonding and Void Evolution in Particulated Ductile Composites

    B.R.Kim1 and H.K.Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.047.253

    Abstract Damage characteristic of particulated ductile composites is a complex evolutionary phenomenon that includes particle debonding and void evolution with the accumulation of the plastic straining of the ductile matrix. In this paper, a micromechanical elastoplastic damage model for ductile matrix composites considering gradually incremental damage (particle debonding and void evolution) is proposed to predict the overall elastoplastic behavior and damage evolution in the composites. The constitutive damage model proposed in an earlier work by the authors [Kim and Lee (2009)] considering particle debonding is extended to accommodate the gradually incremental damage and elastoplastic behavior of the composites. On the basis… More >

  • Open Access

    ARTICLE

    Nodal Constraint, Shear Deformation and Continuity Effects Related to the Modeling of Debonding of Laminates, Using Plate Elements

    E. H. Glaessgen1, W.T. Riddell2, I. S. Raju1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 103-116, 2002, DOI:10.3970/cmes.2002.003.103

    Abstract The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models of the upper and lower surface of the delamination or debond that use two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler configurational modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom… More >

  • Open Access

    ARTICLE

    Progression of failure in fiber-reinforced materials

    R. Han1, M.S. Ingber1, H.L. Schreyer1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 163-176, 2006, DOI:10.3970/cmc.2006.004.163

    Abstract Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interfaces in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks… More >

  • Open Access

    ARTICLE

    A Numerical Modeling of Failure Mechanism for SiC Particle Reinforced Metal-Metrix Composites

    Qiubao Ouyang1, Di Zhang1,2, Xinhai Zhu3, Zhidong Han3

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 37-54, 2014, DOI:10.3970/cmc.2014.041.037

    Abstract The present work is to investigate the failure mechanisms in the deformation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Composites (MMCs). To better deal with crack growth, a new numerical approach: the MLPG-Eshelby Method is used. This approach is based on the meshless local weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a faster convergent rate and is of good accuracy. In addition, it is much easier for this method to allow material to separate in the material fracture processes, comparing to the conventional popular FEM based method. Based on a statistical method and physical observations,… More >

  • Open Access

    ARTICLE

    A Novel Approach to Modeling of Interfacial Fiber/Matrix Cyclic Debonding

    Paria Naghipour1, Evan J. Pineda2, Steven M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 17-33, 2013, DOI:10.3970/cmc.2013.035.017

    Abstract The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses with applied load cycles was achieved via progressive evolution of the interfacial compliance A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained… More >

Displaying 31-40 on page 4 of 39. Per Page