Lu Rong1,#, Manyu Xu2,3,#, Wenbo Zhu2,*, Zhihao Yang2,3, Chao Dong1,4,5, Yunzhi Zhang2,3, Kai Wang1,2, Bing Zheng1,4,5
CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073442
- 10 February 2026
Abstract Deep learning has become integral to robotics, particularly in tasks such as robotic grasping, where objects often exhibit diverse shapes, textures, and physical properties. In robotic grasping tasks, due to the diverse characteristics of the targets, frequent adjustments to the network architecture and parameters are required to avoid a decrease in model accuracy, which presents a significant challenge for non-experts. Neural Architecture Search (NAS) provides a compelling method through the automated generation of network architectures, enabling the discovery of models that achieve high accuracy through efficient search algorithms. Compared to manually designed networks, NAS methods… More >