Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (749)
  • Open Access

    ARTICLE

    Experimental Characterization of MCF-10A Normal Cells Using AFM: Comparison with MCF-7 Cancer Cells

    Moharam Habibnejad Korayem1,*, Zahra Rastegar2

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 109-122, 2019, DOI:10.32604/mcb.2019.04706

    Abstract The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications since they are closely related to the biological processes of cells and human health conditions. The problem in hand is how to measure mechanical properties in order to obtain them more accurately and applicably. Some of the cell’s properties such as elasticity module and adhesion have been measured before using various methods; nevertheless, comprehensive tests for two healthy and cancerous cells have not been performed simultaneously. As a Nanoscale device, AFM has been used for some biological cells, however for… More >

  • Open Access

    ARTICLE

    Epigenetic Modulations Induction Using DSCR1 Ectopic Expression in Breast Cancer Cells

    Zahra Niki Boroujeni1, Atefeh Shirkav1, Seyed Ahmad Aleyasin1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 41-58, 2019, DOI:10.32604/mcb.2019.04366

    Abstract Today, prognosis, diagnosis and treatment of cancers are progressing with non-invasive methods, including investigation and modification of the DNA methylation profile in cancer cells. One of the effective factors in regulating gene expression in mammals is DNA methylation. Methylation alterations of genes by external factors can change the expression of genes and inhibit the cancer. In the present study, we investigated the effect of Down syndrome critical region 1 gene (DSCR1) ectopic expression on the methylation status of the BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines. The effect of DSCR1 ectopic expression on… More >

  • Open Access

    ARTICLE

    Induction of Apoptosis and Autophagy Using Ectopic DSCR1 Expression in Breast Cancer Cells

    Zahra Niki Boroujeni1, Atefeh Shirkav1, Seyed Ahmad Aleyasin1,*

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 215-227, 2018, DOI:10.32604/mcb.2018.01813

    Abstract Down syndrome critical region 1 gene (DSCR1) is an anti-angiogenesis gene that inhibits the growth of tumor cells. In this study, the role of autophagy and apoptosis in DSCR1-induced cytotoxicity were investigated in MDA-MB-468 breast cancer cells. Lentivirus vector harboring DSCR1 (LV-DSCR1+) was constructed in HEK 293 cells and the optimal dosage of lentivirus vector for infection was determined by the MTT assay. After infection of cells using LV-DSCR1+, acridine orange and ethidium bromide staining was performed to investigation of apoptosis and autophagy. Expression of DSCR1 and marker genes for angiogenesis (VEGF), apoptosis (Bax and Bcl2) and autophagy (LC3 and… More >

  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI: 10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this study. The results focus on… More >

  • Open Access

    ARTICLE

    Cancer Cell(s) Cycle Sequencing Reveals Universal Mechanisms of Apoptosis

    R. M. Ardito Marretta*, F. Ales

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 225-266, 2010, DOI:10.3970/mcb.2010.007.225

    Abstract In this paper, cell cycle in higher eukaryotes and their molecular networks signals both inG1/SandG2/Mtransitions are replicatedin silico. Biochemical kinetics, converted into a set of differential equations, and system control theory are employed to design multi-nested digital layers to simulate protein-to-protein activation and inhibition for cell cycle dynamics in the presence of damaged genomes. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage, p21mRNA/cyclin-CDK complex, CDK/CDC25/wee1/ SKP2/APC/CKI and apoptosis target genes system) not only allows the comprehension of the mechanisms of these molecule interactions but paves the way for unraveling the participants and their by-products, until… More >

  • Open Access

    ARTICLE

    On p21 Tracking Property in Cancer Cell Unravelled Bio-Digitally in silico. Are Apoptosis Principles Universal?

    R. M. Ardito Marretta∗,†, G. Barbaraci

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 135-164, 2010, DOI:10.3970/mcb.2010.007.135

    Abstract Upon severe DNA damage, p21 acts in a dual mode; on the one hand, it inhibits the cyclin-CDK complex for arresting the G2/M transition and on the other hand, it indirectly becomes an apoptotic factor by activating - in sequence - the retinoblastoma protein, E2F1 and APAF1 expressions. But, in a cancer cells proliferation, the mechanisms of, and participants in, the apoptosis failure remain unclear. Since the p21/p53/Mdm2 proteins network normally involves a digital response in a cancer cell, through an original design of a cell signalling-protein simulator, we demonstrate,in silico, that apoptosis phase instability is fully reciprocated by p21mRNA… More >

  • Open Access

    ARTICLE

    Tumor Cell Extravasation Mediated by Leukocyte Adhesion is Shear Rate Dependent on IL-8 Signaling*

    Shile Liang, Meghan Hoskins, Cheng Dong

    Molecular & Cellular Biomechanics, Vol.7, No.2, pp. 77-91, 2010, DOI:10.3970/mcb.2010.007.077

    Abstract To complete the metastatic journey, cancer cells have to disseminate through the circulation and extravasate to distal organs. However, the extravasation process, by which tumor cells leave a blood vessel and invade the surrounding tissue from the microcirculation, remains poorly understood at the molecular level. In this study, tumor cell adhesion to the endothelium (EC) and subsequent extravasation were investigated under various flow conditions. Results have shown polymorphonuclear neutrophils (PMNs) facilitate melanoma cell adhesion to the EC and subsequent extravasation by a shear-rate dependent mechanism. Melanoma cell-PMN interactions are mediated by the binding between intercellular adhesion molecule-1 (ICAM-1) on melanoma… More >

  • Open Access

    ARTICLE

    Digital control circuitry of cancer cell and its apoptosis

    R. M. Ardito Marretta*, G. Barbaraci

    Molecular & Cellular Biomechanics, Vol.6, No.3, pp. 175-190, 2009, DOI:10.3970/mcb.2009.006.175

    Abstract This study, through a typical aerospace systems architecture, suggests an engineering design of a human cancer cell circuitry in which a digital optimal control matrix is assigned to repair the DNA damage level and/or to trigger its apoptosis.
    Here, the conceived machinery is proposed taking into account the state of the art in cancer investigation. However, it could be further generalized. The most recent studies on cancer pathologies give a predominant role to the oncosuppressor protein p53 and its antagonist, the oncogene Mdm2.
    Experimental and theoretical approaches are in agreement in deducing a “digital” response of the p53 when genomic… More >

  • Open Access

    ARTICLE

    Melanoma Cell Extravasation under Flow Conditions Is Modulated by Leukocytes and Endogenously Produced Interleukin 8

    Cheng Dong1,2,3, Margaret J. Slattery2,3, Shile Liang3, Hsin-Hsin Peng2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 145-160, 2005, DOI:10.3970/mcb.2005.002.145

    Abstract Attachment of tumor cells to the endothelium (EC) under flow conditions is critical for the migration of tumor cells out of the vascular system to establish metastases. Innate immune system processes can potentially promote tumor progression through inflammation dependant mechanisms.\nobreakspace {} White blood cells, neutrophils (PMN) in particular, are being studied to better understand how the host immune system affects cancer cell adhesion and subsequent migration and metastasis. Melanoma cell interaction with the EC is distinct from PMN-EC adhesion in the circulation. We found PMN increased melanoma cell extravasation, which involved initial PMN tethering on the EC, subsequent PMN capture… More >

Displaying 741-750 on page 75 of 749. Per Page