Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models

    Adil Hussain1,*, Ayesha Aslam2

    Journal on Artificial Intelligence, Vol.6, pp. 129-152, 2024, DOI:10.32604/jai.2024.050277

    Abstract The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models, More >

  • Open Access

    REVIEW

    Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases

    YARA ALZGHOUL, HALA J. BANI ISSA, AHMAD K. SANAJLEH, TAQWA ALABDUH, FATIMAH RABABAH, MAHA AL-SHDAIFAT, EJLAL ABU-EL-RUB*, FATIMAH ALMAHASNEH, RAMADA R. KHASAWNEH, AYMAN ALZU’BI, HUTHAIFA MAGABLEH

    BIOCELL, Vol.48, No.4, pp. 559-569, 2024, DOI:10.32604/biocell.2024.048056

    Abstract Mesenchymal stem cells (MSCs) are ideal candidates for treating many cardiovascular diseases. MSCs can modify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities, which are essential to restore heart function. MSCs can be easily isolated from different sources, including bone marrow, adipose tissues, umbilical cord, and dental pulp. MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders. In this review, we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Decision-Making Mechanism for Risk Assessment of Cardiovascular Disease

    Cheng Wang1, Haoran Zhu2,*, Congjun Rao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 691-718, 2024, DOI:10.32604/cmes.2023.029258

    Abstract Cardiovascular disease (CVD) has gradually become one of the main causes of harm to the life and health of residents. Exploring the influencing factors and risk assessment methods of CVD has become a general trend. In this paper, a machine learning-based decision-making mechanism for risk assessment of CVD is designed. In this mechanism, the logistics regression analysis method and factor analysis model are used to select age, obesity degree, blood pressure, blood fat, blood sugar, smoking status, drinking status, and exercise status as the main pathogenic factors of CVD, and an index system of risk More >

  • Open Access

    ARTICLE

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

    B. Ramesh, Kuruva Lakshmanna*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2513-2528, 2023, DOI:10.32604/cmes.2023.028944

    Abstract Major chronic diseases such as Cardiovascular Disease (CVD), diabetes, and cancer impose a significant burden on people and healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential for the development of intelligent mobile Health (mHealth) interventions for chronic diseases that could revolutionize the delivery of health care anytime, anywhere. The aim of this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made in this… More > Graphic Abstract

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

  • Open Access

    ARTICLE

    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

  • Open Access

    REVIEW

    The role of periodontal disease in atherosclerotic cardiovascular disease

    XIWEI ZHAO1,#, JINSONG WANG1,2,#, YIFAN XU1, JIAN ZHOU5,*, LEI HU1,3,4,*

    BIOCELL, Vol.47, No.7, pp. 1431-1438, 2023, DOI:10.32604/biocell.2023.028217

    Abstract Atherosclerotic cardiovascular disease (ASCVD) includes a group of disorders of the heart and blood vessels and accounts for major morbidity and premature death worldwide. Periodontitis is a chronic inflammatory disease with the gradual destruction of supporting tissues around the teeth, including gingiva, periodontal ligament, alveolar bone, and cementum. Periodontitis has been found to potentially increase the risk of ASCVD. Generally, oral microorganisms and inflammation are the major factors for periodontitis to the incidence of ASCVD. Recently, evidence has shown that the loss of masticatory function is another important factor of periodontitis to the incidence of More > Graphic Abstract

    The role of periodontal disease in atherosclerotic cardiovascular disease

  • Open Access

    ARTICLE

    Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease

    Ingo Paetsch1,*, Roman Gebauer2, Christian Paech2, Frank-Thomas Riede2, Sabrina Oebel1, Andreas Bollmann1, Christian Stehning3, Jouke Smink4, Ingo Daehnert2, Cosima Jahnke1

    Congenital Heart Disease, Vol.18, No.3, pp. 279-294, 2023, DOI:10.32604/chd.2023.029634

    Abstract Background: In congenital heart disease (CHD) patients, detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making. Hence, the present study investigated the applicability of an advanced cardiovascular magnetic resonance (CMR) whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography. Methods: 86 consecutive pediatric patients and adults with congenital heart disease (age, 1 to 74 years; mean, 35 years) underwent CMR imaging including a free-breathing, ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed… More >

  • Open Access

    ARTICLE

    Probability Based Regression Analysis for the Prediction of Cardiovascular Diseases

    Wasif Akbar1, Adbul Mannan2, Qaisar Shaheen3,*, Mohammad Hijji4, Muhammad Anwar5, Muhammad Ayaz6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6269-6286, 2023, DOI:10.32604/cmc.2023.036141

    Abstract Machine Learning (ML) has changed clinical diagnostic procedures drastically. Especially in Cardiovascular Diseases (CVD), the use of ML is indispensable to reducing human errors. Enormous studies focused on disease prediction but depending on multiple parameters, further investigations are required to upgrade the clinical procedures. Multi-layered implementation of ML also called Deep Learning (DL) has unfolded new horizons in the field of clinical diagnostics. DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets. This paper proposed a novel method that deals with the issue of less data dimensionality. Inspired… More >

  • Open Access

    ARTICLE

    A Semantic Adversarial Network for Detection and Classification of Myopic Maculopathy

    Qaisar Abbas1, Abdul Rauf Baig1,*, Ayyaz Hussain2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1483-1499, 2023, DOI:10.32604/cmc.2023.036366

    Abstract The diagnosis of eye disease through deep learning (DL) technology is the latest trend in the field of artificial intelligence (AI). Especially in diagnosing pathologic myopia (PM) lesions, the implementation of DL is a difficult task because of the classification complexity and definition system of PM. However, it is possible to design an AI-based technique that can identify PM automatically and help doctors make relevant decisions. To achieve this objective, it is important to have adequate resources such as a high-quality PM image dataset and an expert team. The primary aim of this research is… More >

Displaying 1-10 on page 1 of 54. Per Page