Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain,… More >

  • Open Access

    ARTICLE

    Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach

    Chun Yang∗,†, Dalin Tang∗,‡, Shunichi Kobayashi§, Jie Zheng, Pamela K. Woodard§, Zhongzhao Teng*, Richard Bach||, David N. Ku∗∗

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 259-274, 2008, DOI:10.3970/mcb.2008.005.259

    Abstract Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to… More >

  • Open Access

    ARTICLE

    A General Constitutive Model for Vascular Tissue Considering Stress Driven Growth and Biological Availability

    F. J. Bellomo1, S. Oller2, F. Armero3, L. G. Nallim1

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.1, pp. 1-22, 2011, DOI:10.3970/cmes.2011.080.001

    Abstract Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of biological availability to generate new tissue together with the stresses and strains in the processes of natural or pathological growth. In this sense, the model presented in this work is oriented to describe growth of vascular tissue under "stress driven growth" considering biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition… More >

Displaying 51-60 on page 6 of 53. Per Page