Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface

    Muhammad A. Sadiq1,2,*, Nadeem Abbas3, Haitham M. S. Bahaidarah4, Mohammad Amjad5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 471-486, 2023, DOI:10.32604/fdmp.2022.021133

    Abstract We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface, together with a heat transfer analysis of the same problem. The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate. Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass, momentum, energy and concentration is obtained accordingly. These are turned into ordinary differential equations using a similarity transformation. We show that these equations have dual solutions for a number… More >

  • Open Access

    ARTICLE

    Heat Transfer of Casson Fluid over a Vertical Plate with Arbitrary Shear Stress and Exponential Heating

    Dolat Khan1, Gohar Ali1, Arshad Khan2, Ilyas Khan3,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1025-1034, 2022, DOI:10.32604/cmc.2022.012635

    Abstract The basic objective of this work is to study the heat transfer of Casson fluid of non-Newtonian nature. The fluid is considered over a vertical plate such that the plate exhibits arbitrary wall shear stress at the boundary. Heat transfers due to exponential plate heating and natural convection are due to buoyancy force. Magnetohydrodynamic (MHD) analysis in the occurrence of a uniform magnetic field is also considered. The medium over the plate is porous and hence Darcy’s law is applied. The governing equations are established for the velocity and temperature fields by the usual Boussinesq approximation. The problem is first… More >

  • Open Access

    ARTICLE

    A Fractal-Fractional Model for the MHD Flow of Casson Fluid in a Channel

    Nadeem Ahmad Sheikh1,2, Dennis Ling Chuan Ching1, Thabet Abdeljawad3,4,5, Ilyas Khan6,*, Muhammad Jamil7,8, Kottakkaran Sooppy Nisar9

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1385-1398, 2021, DOI:10.32604/cmc.2021.011986

    Abstract An emerging definition of the fractal-fractional operator has been used in this study for the modeling of Casson fluid flow. The magnetohydrodynamics flow of Casson fluid has cogent in a channel where the motion of the upper plate generates the flow while the lower plate is at a static position. The proposed model is non-dimensionalized using the Pi-Buckingham theorem to reduce the complexity in solving the model and computation time. The non-dimensional fractal-fractional model with the power-law kernel has been solved through the Laplace transform technique. The Mathcad software has been used for illustration of the influence of various parameters,… More >

  • Open Access

    ARTICLE

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer: A Comparative Fractional Model

    Anis ur Rehman1, Farhad Ali1, Aamina Aamina2,3,*, Anees Imitaz1, Ilyas Khan4, Kottakkaran Sooppy Nisar5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1445-1459, 2021, DOI:10.32604/cmc.2020.012457

    Abstract It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications. Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’ oscillating flow using fractional-derivatives. As it has a combined mass-heat transfer effect, we considered the fluid flow upon an oscillatory infinite vertical-plate. Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana–Baleanu) and CF (Caputo–Fabrizio), on dimensionless governing equations and… More >

  • Open Access

    ARTICLE

    Generalized Model of Blood Flow in a Vertical Tube with Suspension of Gold Nanomaterials: Applications in the Cancer Therapy

    Anees Imtiaz1, Oi-Mean Foong2, Aamina Aamina1, Nabeel Khan1, Farhad Ali3, 4, *, Ilyas Khan5

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 171-192, 2020, DOI:10.32604/cmc.2020.011397

    Abstract Gold metallic nanoparticles are generally used within a lab as a tracer, to uncover on the presence of specific proteins or DNA in a sample, as well as for the recognition of various antibiotics. They are bio companionable and have properties to carry thermal energy to tumor cells by utilizing different clinical approaches. As the cancer cells are very smaller so for the infiltration, the properly sized nanoparticles have been injected in the blood. For this reason, gold nanoparticles are very effective. Keeping in mind the above applications, in the present work a generalized model of blood flow containing gold… More >

  • Open Access

    ARTICLE

    Non-Aligned Stagnation Point Flow of a Casson Fluid Past a Stretching Sheet in a Doubly Stratified Medium

    N. Vijaya1, G. Venkata Ramana Reddy1, *, Y. Hara Krishna1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 233-251, 2019, DOI:10.32604/fdmp.2019.03727

    Abstract This paper investigates the problem of oblique hydro magnetic stagnation point flow of an electrically conducting Casson fluid over stretching sheet embedded in a doubly stratified medium in the presence of thermal radiation and heat source/absorption with first order chemical reaction. It is assumed that the fluid impinges on the wall obliquely. Similarity variables were used to convert the partial differential equations to ordinary differential equations. The transformed ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg method with shooting technique. It is observed that a boundary layer is formed when the stretching velocity of the surface is less than the… More >

Displaying 31-40 on page 4 of 36. Per Page