Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (598)
  • Open Access

    ARTICLE

    A Simplified Analysis of the Tire-Tread Contact Problem using Displacement Potential Based Finite-Difference Technique

    S Reaz Ahmed1, S K Deb Nath1

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.1, pp. 35-64, 2009, DOI:10.3970/cmes.2009.044.035

    Abstract The paper presents a simplified analysis of stresses and deformations at critical sections of a tire-tread. Displacement potential formulation is used in conjunction with the finite-difference method to model the present contact problem. The solution of the problem is obtained for two limiting cases of the contact boundary - one allows the lateral slippage and the other conforms to the no-slip condition along the lateral direction. The influential effects of tire material and tread aspect-ratio are discussed. The reliability and accuracy of the solution is also discussed in light of comparison made with the usual computational approach. More >

  • Open Access

    ARTICLE

    Variational formulation and Nonsmooth Optimization Algorithms in Elastostatic Contact Problems for Cracked Body

    V.V. Zozulya1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 187-216, 2009, DOI:10.3970/cmes.2009.042.187

    Abstract The mathematical statement for contact problem with unilateral restrictions and friction is done in classical and weak forms. Different variational formulation of unilateral contact problems with friction based on principles of virtual displacements and virtual stresses are considered. Especially boundary variational functionals that are used with boundary integral equations have been established. Nonsmooth optimization algorithms of Udzawa type for solution of unilateral contact problem with friction have been developed. Some theoretical results of existence and uniqueness in elastostatic unilateral contact problem with friction are outlined. More >

  • Open Access

    ARTICLE

    Micromechanical analysis of aligned and randomly oriented whisker-/ short fiber-reinforced composites

    S.H. Pyo1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.3, pp. 271-306, 2009, DOI:10.3970/cmes.2009.040.271

    Abstract This paper presents a micromechanical approach for predicting the elastic and multi-level damage response of aligned and randomly oriented whisker-/ short fiber-reinforced composites. Based on a combination of Eshelby's micromechanics and the evolutionary imperfect interface approach, the effective elastic moduli of the composites are derived explicitly. The modified Eshelby's tensor for spheroidal inclusions with slightly weakened interface [Qu (1993b)] is extended in the present study to model whiskers or short fibers having mild or severe imperfect interfaces. Aligned and random orientations of spheroidal reinforcements are considered. A multi-level damage model in accordance with the Weibull's probabilistic function is then incorporated… More >

  • Open Access

    ARTICLE

    Finite Rotation Geometrically Exact Four-Node Solid-Shell Element with Seven Displacement Degrees of Freedom

    G. M. Kulikov1, S. V. Plotnikova1

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.1, pp. 15-38, 2008, DOI:10.3970/cmes.2008.028.015

    Abstract This paper presents a robust non-linear geometrically exact four-node solid-shell element based on the first-order seven-parameter equivalent single-layer theory, which permits us to utilize the 3D constitutive equations. The term "geometrically exact" reflects the fact that geometry of the reference surface is described by analytically given functions and displacement vectors are resolved in the reference surface frame. As fundamental shell unknowns six displacements of the outer surfaces and a transverse displacement of the midsurface are chosen. Such choice of displacements gives the possibility to derive strain-displacement relationships, which are invariant under arbitrarily large rigid-body shell motions in a convected curvilinear… More >

  • Open Access

    ARTICLE

    Analyzing Production-Induced Subsidence using Coupled Displacement Discontinuity and Finite Element Methods

    Shunde Yin1, Leo Rothenburg1, Maurice B. Dusseault1

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 111-120, 2007, DOI:10.3970/cmes.2007.019.111

    Abstract Subsidence problem is of great importance in petroleum engineering and environmental engineering. In this paper, we firstly apply a hybrid Displacement Discontinuity-FEM modeling to this classic problem: the evaluation of subsidence over a compacting oil reservoir. We use displacement discontinuity method to account for the reservoir surrounding area, and finite element methods in the fully coupled simulation of the reservoir itself. This approach greatly reduces the number of degrees of freedom compared to an analyzing fully coupled problem using only a finite element or finite difference discretization. More >

  • Open Access

    ARTICLE

    General Corotational Rate Tensor and Replacement of Material-time Derivative to Corotational Derivative of Yield Function

    K. Hashiguchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 55-62, 2007, DOI:10.3970/cmes.2007.017.055

    Abstract Constitutive equation describing the mechanical properties of material has to be formulated in an identical form independent of coordinate systems by which it is described even if there exist any mutual configuration and/or mutual rotation between the material and coordinate systems. This mechanical requirement is attained by describing rate variables as corotational rate tensors with objectivity in constitutive equations in rate form. Besides, in order to use the material-time derivative of yield condition as a consistency condition it has to be replaced to the corotational derivative. In this note a general corotational rate for tensors in arbitrary order having the… More >

  • Open Access

    EDITORIAL

    Preface: International Workshop on "Development and Advancement of Computational Mechanics'', April 22-23, 2005

    Hiroshi Okada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 185-186, 2005, DOI:10.3970/cmes.2005.010.185

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations

    S. N. Atluri1, Z. D. Han1, S. Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 507-518, 2003, DOI:10.3970/cmes.2003.004.507

    Abstract The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradients of the displacements of the fundamental solutions [Okada, Rajiyah, and Atluri (1989a,b)]. By employing the various types of test functions, in the MLPG-type weak-forms of the non-hyper-singular dBIE and tBIE over the local sub-boundary surfaces, several types of MLPG/BIEs are formulated, while also… More >

  • Open Access

    ARTICLE

    Finite Displacement Analysis Using Rotational Degrees of Freedom about Three Right-angled Axes

    Humihiko Gotou1, Takashi Kuwataka1, Terumasa Nishihara1, Tetsuo Iwakuma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 319-328, 2003, DOI:10.3970/cmes.2003.004.319

    Abstract The stiffness equation in finite displacement problems is often derived from the virtual work equation, partly in order to avoid the complicated formulation based on the potential functional. Describing the virtual rotational angles by infinitesimal rotational angles about three axes of the right-angled Cartesian coordinate system, we formulate tangent stiffness equations whose rotational degrees of freedom are described by rotational angles about the three axes. The rotational degrees of freedom are useful to treat three rotational components in nodal displacement vectors as vector components for coordinate transformation, when non-vector components like Euler's angles are used to describe finite rotations. In… More >

  • Open Access

    ARTICLE

    Finite-Element Nonlinear Dynamics of Flexible Structures in Three Dimensions

    S. Okamoto1, Y. Omura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 287-300, 2003, DOI:10.3970/cmes.2003.004.287

    Abstract The purpose of this study is to develop a procedure for performing a dynamic analysis in the case that a structure undergoes large translational and rotational displacements when moving along a nonlinear trajectory at variable velocity. Finite-element equations of motion that include the inertial force of the structure's motion have been derived. The equations also account for the geometric nonlinearity that has to be considered in a problem of finite translational and rotational displacements. A finite rotational matrix was used to transfer vectors or matrices measured in a certain coordinate frame to those measured in another coordinate frame. The computational… More >

Displaying 561-570 on page 57 of 598. Per Page