Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics

    Yonggang Tong1,*, Kai Yang1, Pengfei Li1, Yongle Hu1, Xiubing Liang2,*, Jian Liu3, Yejun Li4, Jingzhong Fang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.071890 - 10 November 2025

    Abstract (NbZrHfTi)C high-entropy ceramics, as an emerging class of ultra-high-temperature materials, have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional high-temperature properties. This study systematically investigates the mechanical properties of (NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory, combined with the Debye-Grüneisen model, to explore the variations in their thermophysical properties with temperature (0–2000 K) and pressure (0–30 GPa). Thermodynamically, the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in (NbZrHfTi)C. The calculated results of the elastic stiffness constant indicate that the… More >

  • Open Access

    ARTICLE

    Influence of heat treatment on microwave dielectric properties of erbium doped borotellurite glass ceramics

    S. Othmana, Y. H. Luab, E. S. Sazalia,, Y. S. Yapb,, R. Hisamc

    Chalcogenide Letters, Vol.22, No.5, pp. 451-459, 2025, DOI:10.15251/CL.2025.225.451

    Abstract High-performance glass-ceramics are increasingly explored for their suitability in high-frequency dielectric applications, presenting a significant challenge in materials science. A primary focus has been allocated to investigating borotellurite glasses operating at frequencies below 15 MHz. Borotellurite glasses with the composition 69TeO-10BO3-10PbO-10ZnO-1ErO3 were fabricated via the melt-quenching method. This study examines the effects of heat treatment durations (1–24 hours) on these glasses. Variations in density, molar volume, structure, and dielectric properties were attributed to changes in non-bridging oxygen bonding resulting from the heat treatments. X-ray diffraction analysis confirmed the amorphous nature of the as-quenched glass. Morphological changes More >

  • Open Access

    ARTICLE

    Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na1/2Bi1/2TiO3-Based Ceramic Capacitors

    Shige Wang1, Yalong Liang2, Lian Huang3, Pei Li4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2729-2748, 2025, DOI:10.32604/cmc.2025.068351 - 23 September 2025

    Abstract This study introduces a hybrid Cuckoo Search-Deep Neural Network (CS-DNN) model for uncertainty quantification and composition optimization of Na1/2Bi1/2TiO3 (NBT)-based dielectric energy storage ceramics. Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate (1 − x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD, SEM, and electrical characterization. The key innovation lies in integrating the CS metaheuristic algorithm with a DNN, overcoming local minima in training and establishing a robust composition-property prediction framework. Our model accurately… More >

  • Open Access

    REVIEW

    Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics: A Review

    Junhui Hua1, Junyuan Xiong2, Bo Xu1,*, Chong Wang1, Qingyuan Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 65-88, 2025, DOI:10.32604/cmc.2025.068226 - 29 August 2025

    Abstract Shape memory alloys (SMAs) and shape memory ceramics (SMCs) exhibit high recovery ability due to the martensitic transformation, which complicates the fracture mechanism of SMAs and SMCs. The phase field method, as a powerful numerical simulation tool, can efficiently resolve the microstructural evolution, multi-field coupling effects, and fracture behavior of SMAs and SMCs. This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs, covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture. Subsequently, it systematically examines the phase More >

  • Open Access

    ARTICLE

    Upconversion photoluminescence and optical temperature sensing properties of PbNb2O6:Yb3+, Ln3+ (Ln3+=Er3+/Ho3+) ceramics

    Z. Liua,*, K. Lib, Y. Sunc, R. X. Wanga

    Chalcogenide Letters, Vol.21, No.12, pp. 977-988, 2024, DOI:10.15251/CL.2024.2112.977

    Abstract Through conventional solid-state sintering process, PbNb2O6:Yb3+, Ln3+ (Ln3+=Er3+/Ho3+) ceramics have been fabricated. The structural information of synthesized ceramics was obtained via X-ray diffraction. Scanning electron microscopy was utilized to investigate their morphological properties. The investigation of upconversion photoluminescence properties of the synthesized ceramics was conducted by analyzing upconversion emission spectra upon excitation with 980 nm light. Power dependence studies confirmed the presence of two-photon absorption processes in both PbNb2O6:Yb3+, Er 3+ and PbNb2O6:Yb3++, Ho3+ ceramics. Temperature-dependent experiments from 303 K to 513 K demonstrated significant variations in emission intensities and fluorescence intensity ratios (FIR), enabling the assessment of temperature More >

  • Open Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024

    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

  • Open Access

    ARTICLE

    Photoluminescence properties of Ba0.7Sr0.3TiO3:Sm3+ modified K0.5Na0.5NbO3 perovskite oxide ceramics

    K. W. Suna, Z. Liub,*, R. X. Wangb, X. C. Linga, J. W. Suna

    Chalcogenide Letters, Vol.20, No.8, pp. 563-571, 2023, DOI:10.15251/CL.2023.208.563

    Abstract Ba0.7Sr0.3TiO3:Sm3+ modified KxNa(1-x)NbO3 ceramics with perovskite-type structure were synthesized via solid state sintering method. Sm3+ ions doping was designed for substituting both A and B sites in the ABO3 structure, Sm3+ doped Ba0.7Sr0.3TiO3 (Ba0.7Sr0.3TiO3:Sm3+ ) oxide precursor powders with the chemical formula of Ba0.7Sr0.3xSmx(Ti1-xSmx)O3 (x=0.005, 0.015, 0.025) were synthesized. Combined Ba0.7Sr0.3TiO3:Sm3+ with K0.5Na0.5NbO3, the perovskite-type solid solution composite ceramics were fabricated via solid phase sintering method. X-Ray diffraction was used for investigating the phase structure of the precursor powders and luminescent composite ceramics. The photoluminescence properties of the Sm3+ ions in the Ba0.7Sr0.3TiO3-K0.5Na0.5NbO3 composite ceramic materials were systematically investigated by exploring More >

  • Open Access

    PROCEEDINGS

    Size Dependent Structures and Properties of Na0.5Bi0.5TiO3-Based Ceramics for Piezoelectric Sensors

    Pan Chen1,2,3, Baojin Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09199

    Abstract Generally, film dielectric materials often exhibit size-dependent structure and electric properties. In this work, we demonstrate a similar behavior in bulk Na0.5Bi0.5TiO3 (NBT)-based polycrystalline ceramics. According to the results from X-ray diffraction, the (Na0.5Bi0.5)0.92Ba0.08Ti0.99Mg0.01O2.99 (NBT8M1.0) ceramic showed a complex structure that consists of rhombohedral, tetragonal and cubic symmetries. We found, when decreasing the thickness of a ϕ 10 mm NBT8M1.0 ceramic from 1230 μm to 230 μm, the ceramic showed increased content of cubic symmetry (CC) from 28% to 56%. Meanwhile, the piezoelectric response (d33) increased from 107 pC/N to 134 pC/N and the depolarization temperature (Td) decreased… More >

  • Open Access

    PROCEEDINGS

    The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior

    Yuanzhe Li1, Qiwen Liu2,*, Lisheng Liu2, Hai Mei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09500

    Abstract The ablation of ultra-high-temperature ceramics (UTHCs) is a complex physicochemical process including mechanical behavior, temperature effect, and chemical reactions. In order to realize the structural optimization and functional design of ultra-high temperature ceramics, a coupled thermo-chemomechanical bond-based peridynamics (PD) model is proposed based on the ZrB2 ceramics oxidation kinetics model and coupled thermomechanical bond-based peridynamics. Compared with the traditional coupled thermo-mechanical model, the proposed model considers the influence of chemical reaction process on the ablation resistance of ceramic materials. In order to verify the reliability of the proposed model, the thermomechanical coupling model, damage model and… More >

  • Open Access

    ARTICLE

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

    Liang Yu1,2,3, Yuan Liu1,2,3, Xiuling Cao4,*, Yulong Yan1,2,3, Chen Zhang1,2,3, Yanli Jiang1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3057-3072, 2023, DOI:10.32604/jrm.2023.025732 - 05 June 2023

    Abstract In this study, the effect of sintering temperature and the addition of kaolin, a sintering agent, on the microscopic, phase, and mechanical properties of ceramics were investigated using secondary aluminum dross (SAD) as the main component in the manufacturing of ceramics. The basic phases of the ceramics were Al2O3, MgAl2O4, NaAl11O17, and SiO2 without the addition of kaolin. The diffraction peaks of MgAl2O4, NaAl11O17, and SiO2 kept decreasing while those of Al2O3 kept increasing with an increase in temperature. In addition, the increase in temperature promoted the growth of the grains. The grains were uniform in size and regular… More > Graphic Abstract

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

Displaying 1-10 on page 1 of 19. Per Page