Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (119)
  • Open Access

    ARTICLE

    A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix

    Hongyu Zhao1,2, Shengsheng Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068426 - 10 November 2025

    Abstract Driven by advancements in mobile internet technology, images have become a crucial data medium. Ensuring the security of image information during transmission has thus emerged as an urgent challenge. This study proposes a novel image encryption algorithm specifically designed for grayscale image security. This research introduces a new Cantor diagonal matrix permutation method. The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix, where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice (CML). The high initial value sensitivity of the… More >

  • Open Access

    ARTICLE

    CEOE-Net: Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis

    Huihui Yang1, Saif Ur Rehman Khan2,*, Omair Bilal2, Chao Chen1,*, Ming Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025

    Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >

  • Open Access

    ARTICLE

    Secure and Invisible Dual Watermarking for Digital Content Based on Optimized Octonion Moments and Chaotic Metaheuristics

    Ahmed El Maloufy, Mohamed Amine Tahiri, Ahmed Bencherqui, Hicham Karmouni, Mhamed Sayyouri*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5789-5822, 2025, DOI:10.32604/cmc.2025.068885 - 23 October 2025

    Abstract In the current digital context, safeguarding copyright is a major issue, particularly for architectural drawings produced by students. These works are frequently the result of innovative academic thinking combining creativity and technical precision. They are particularly vulnerable to the risk of illegal reproduction when disseminated in digital format. This research suggests, for the first time, an innovative approach to copyright protection by embedding a double digital watermark to address this challenge. The solution relies on a synergistic fusion of several sophisticated methods: Krawtchouk Optimized Octonion Moments (OKOM), Quaternion Singular Value Decomposition (QSVD), and Discrete Waveform… More >

  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    ARTICLE

    Adaptive Multi-Learning Cooperation Search Algorithm for Photovoltaic Model Parameter Identification

    Xu Chen1,*, Shuai Wang1, Kaixun He2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1779-1806, 2025, DOI:10.32604/cmc.2025.066543 - 29 August 2025

    Abstract Accurate and reliable photovoltaic (PV) modeling is crucial for the performance evaluation, control, and optimization of PV systems. However, existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency. To address these challenges, we propose an adaptive multi-learning cooperation search algorithm (AMLCSA) for efficient identification of unknown parameters in PV models. AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises. It enhances the original cooperation search algorithm in two key aspects: (i) an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights, allowing better individuals to More >

  • Open Access

    ARTICLE

    Wave Propagation and Chaotic Behavior in Conservative and Dissipative Sawada–Kotera Models

    Nikolai A. Magnitskii*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1529-1544, 2025, DOI:10.32604/fdmp.2025.067021 - 31 July 2025

    Abstract This paper presents both analytical and numerical studies of the conservative Sawada–Kotera equation and its dissipative generalization, equations known for their soliton solutions and rich chaotic dynamics. These models offer valuable insights into nonlinear wave propagation, with applications in fluid dynamics and materials science, including systems such as liquid crystals and ferrofluids. It is shown that the conservative Sawada–Kotera equation supports traveling wave solutions corresponding to elliptic limit cycles, as well as two- and three-dimensional invariant tori surrounding these cycles in the associated ordinary differential equation (ODE) system. For the dissipative generalized Sawada–Kotera equation, chaotic More >

  • Open Access

    ARTICLE

    Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management

    Venkata Satya Suresh kumar Kondeti1, Raghavendra Kulkarni1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4973-4995, 2025, DOI:10.32604/cmc.2025.066428 - 30 July 2025

    Abstract Next-generation 6G networks seek to provide ultra-reliable and low-latency communications, necessitating network designs that are intelligent and adaptable. Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures. Nonetheless, sustaining elevated Quality of Service (QoS) in dynamic, resource-limited systems poses significant hurdles. This study introduces an innovative packet-based proactive end-to-end (ETE) resource management system that facilitates network slicing with improved resilience and proactivity. To get around the drawbacks of conventional reactive systems, we develop a cost-efficient slice provisioning architecture that takes into account limits on radio, processing, and… More >

  • Open Access

    ARTICLE

    Secure Medical Image Transmission Using Chaotic Encryption and Blockchain-Based Integrity Verification

    Rim Amdouni1,2,*, Mahdi Madani3, Mohamed Ali Hajjaji1,4, El Bay Bourennane3, Mohamed Atri5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5527-5553, 2025, DOI:10.32604/cmc.2025.065356 - 30 July 2025

    Abstract Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector. In the context of security, this paper proposes a novel encryption algorithm that integrates Blockchain technology, aiming to improve the security and privacy of transmitted data. The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps: The logistic Map, the Tent Map, and the Henon Map used to generate three encryption keys. The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.… More >

  • Open Access

    ARTICLE

    Active Protection Scheme of DNN Intellectual Property Rights Based on Feature Layer Selection and Hyperchaotic Mapping

    Xintao Duan1,2,*, Yinhang Wu1, Zhao Wang1, Chuan Qin3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4887-4906, 2025, DOI:10.32604/cmc.2025.064620 - 30 July 2025

    Abstract Deep neural network (DNN) models have achieved remarkable performance across diverse tasks, leading to widespread commercial adoption. However, training high-accuracy models demands extensive data, substantial computational resources, and significant time investment, making them valuable assets vulnerable to unauthorized exploitation. To address this issue, this paper proposes an intellectual property (IP) protection framework for DNN models based on feature layer selection and hyper-chaotic mapping. Firstly, a sensitivity-based importance evaluation algorithm is used to identify the key feature layers for encryption, effectively protecting the core components of the model. Next, the L1 regularization criterion is applied to More >

  • Open Access

    ARTICLE

    Improved Multi-Fusion Black-Winged Kite Algorithm for Optimizing Stochastic Configuration Networks for Lithium Battery Remaining Life Prediction

    Yuheng Yin, Lin Wang*

    Energy Engineering, Vol.122, No.7, pp. 2845-2864, 2025, DOI:10.32604/ee.2025.065889 - 27 June 2025

    Abstract The accurate estimation of lithium battery state of health (SOH) plays an important role in the health management of battery systems. In order to improve the prediction accuracy of SOH, this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm, called SBKA-CLSCN. Firstly, the indirect health index (HI) of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data. Secondly, to address the problem that the black-winged kite optimization algorithm (BKA) falls into the local optimum problem and improve the… More >

Displaying 1-10 on page 1 of 119. Per Page