Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    An Effective Approach of Secured Medical Image Transmission Using Encryption Method

    Ranu Gupta1,3,*, Rahul Pachauri2,3, Ashutosh Kumar Singh1,4

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 63-83, 2018, DOI: 10.3970/mcb.2018.00114

    Abstract Various chaos-based image encryption schemes have been proposed in last few years. The proposed image encryption method uses chaotic map. The encryption is done by using 256 bit long external secret key. The initial condition for the chaotic mapping is evaluated by the use of external secret key along with the mapping function. Besides that, the proposed method is made more robust by applying multiple operations to the pixels of the image depending on the outcome of the calculation of the logistic map. Moreover, block shuffling of the image and modifying the secret key after encryption of each row is… More >

  • Open Access

    ARTICLE

    Machining Parameters Optimization of Multi-Pass Face Milling Using a Chaotic Imperialist Competitive Algorithm with an Efficient Constraint-Handling Mechanism

    Yang Yang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 365-389, 2018, DOI: 10.31614/cmes.2018.03847

    Abstract The selection of machining parameters directly affects the production time, quality, cost, and other process performance measures for multi-pass milling. Optimization of machining parameters is of great significance. However, it is a nonlinear constrained optimization problem, which is very difficult to obtain satisfactory solutions by traditional optimization methods. A new optimization technique combined chaotic operator and imperialist competitive algorithm (ICA) is proposed to solve this problem. The ICA simulates the competition between the empires. It is a population-based meta-heuristic algorithm for unconstrained optimization problems. Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,… More >

  • Open Access

    ARTICLE

    Absolute Stability of Chaotic Asynchronous Multi-Interactions Schemes for Solving ODE

    P. Redou1, L. Gaubert1, G. Desmeulles1, P-A. Béal2, C. Le Gal2, V. Rodin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.1, pp. 11-40, 2010, DOI:10.3970/cmes.2010.070.011

    Abstract Multi Interaction Systems, used in the context of Virtual Reality, are dedicated to real-time interactive simulations. They open the way to the in virtuo experimentation, especially useful in the domain of biochemical kinetics. To this purpose, chaotic and asynchronous scheduling of autonomous processes is based upon desynchronization of phenomena involved in the system. It permits interactivity, especially the capability to add or remove phenomena in the course of a simulation. It provides methods of resolution of ordinary differential systems and partial derivative equations. Proofs of convergence for these methods have been established, but the problem of absolute stability, although it… More >

  • Open Access

    ARTICLE

    A novel MLPG-Finite-Volume Mixed Method for Analyzing Stokesian Flows & Study of a new Vortex Mixing Flow

    Ruben Avila1, Zhidong Han2, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.4, pp. 363-396, 2011, DOI:10.3970/cmes.2011.071.363

    Abstract The two dimensional steady state Stokes equations are solved by using a novel MLPG-Mixed Finite Volume method, that is based on the independent meshless interpolations of the deviatoric velocity strain tensor, the volumetric velocity strain tensor, the velocity vector and the pressure. The pressure field directly obtained from this method does not suffer from the malady of checker-board patterns. Numerical simulations of the flow field, and trajectories of passive fluid elements in a new complex Stokes flow are also presented. The new flow geometry consists of three coaxial cylinders two of smaller diameter, that steadily rotate independently, inside a third… More >

  • Open Access

    ARTICLE

    Two-phase flow in complex geometries: A diffuse domain approach

    S. Aland1, J. Lowengrub2, A. Voigt1

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 77-108, 2010, DOI:10.3970/cmes.2010.057.077

    Abstract We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement… More >

  • Open Access

    ARTICLE

    On the KP Equation with Hysteresis

    Veturia Chiroiu1, Ioan Ursu2, Ligia Munteanu3, Tudor Sireteanu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 91-106, 2012, DOI:10.3970/fdmp.2011.008.091

    Abstract The Kadomtsev-Petviashvili (KP) equation describes the evolution of nonlinear, long waves of small amplitude with slow dependence on the transverse coordinate. The KP equation coupled with the generalized play operator is studied in this paper in order to explain the dilatonic behavior of the soliton interaction and the generation of huge waves in shallow waters. Hirota bilinear method and results from a nonlinear semigroup theory are applied to simulate the resonant soliton interactions. More >

  • Open Access

    ARTICLE

    A Robust Image Watermarking Scheme Using Z-Transform, Discrete Wavelet Transform and Bidiagonal Singular Value Decomposition

    N. Jayashree1,*, R. S. Bhuvaneswaran1

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 263-285, 2019, DOI:10.32604/cmc.2019.03924

    Abstract Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images, videos, and audio data. Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties. This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform (DWT), Z-transform (ZT) and Bidiagonal Singular Value Decomposition (BSVD). The original image is decomposed into 3-level DWT, and then, ZT is applied on the HH3 and HL3 sub-bands. The watermark image is encrypted using Arnold Cat Map. BSVD for the watermark and transformed original image… More >

  • Open Access

    ARTICLE

    Robust Image Hashing via Random Gabor Filtering and DWT

    Zhenjun Tang1,*, Man Ling1, Heng Yao1, Zhenxing Qian2, Xianquan Zhang1, Jilian Zhang3, Shijie Xu1

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 331-344, 2018, DOI:10.3970/cmc.2018.02222

    Abstract Image hashing is a useful multimedia technology for many applications, such as image authentication, image retrieval, image copy detection and image forensics. In this paper, we propose a robust image hashing based on random Gabor filtering and discrete wavelet transform (DWT). Specifically, robust and secure image features are first extracted from the normalized image by Gabor filtering and a chaotic map called Skew tent map, and then are compressed via a single-level 2-D DWT. Image hash is finally obtained by concatenating DWT coefficients in the LL sub-band. Many experiments with open image datasets are carried out and the results illustrate… More >

Displaying 81-90 on page 9 of 88. Per Page