Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (154)
  • Open Access

    ARTICLE

    On Macroscopic Behaviors of Shape Memory Alloy Thick-walled Cylinder Under Combined Internal Pressure and Radial Temperature Gradient

    Bingfei Liu1, Guansuo Dui2,3, Lijun Xue2, Benming Xie1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 239-260, 2013, DOI:10.32604/cmes.2013.094.239

    Abstract Analytical solutions are derived for the macroscopic behaviors of a Shape Memory Alloy (SMA) thick-walled cylinder subjected to internal pressure and radial temperature gradient. The Tresca transformation criterion and linear hardening are used. Equations are given for the radial and circumferential stresses, transformation strains and martensite volume fractions at both the elastic step and the transformation step. Numerical results are presented and in good agreement with the finite element simulations. More >

  • Open Access

    ARTICLE

    MODELLING OF COMBINED HEAT AND MASS TRANSFER OF WATER DROPLETS IN THERMAL TECHNOLOGY EQUIPMENT

    Gintautas Miliauskas*, Stasys Sinkunas, Kristina Norvaisiene, Kestutis Sinkunas

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3006

    Abstract Water droplet evaporation process is numerically modelled under various heat and mass transfer conditions. Regularities of heat transfer process interaction are examined. Modelling in this work was performed using the combined analytical – numerical method to investigate heat and mass transfer in the two-phase droplets-gas flow system. The influence of forced liquid circulation on the thermal state of droplets is taken into account by the effective coefficient of thermal conductivity. Calculating the rate of droplet evaporation and the intensity of convective heating, the influence of the Stefan’s hydrodynamic flow is taken into account. Balancing energy More >

  • Open Access

    ARTICLE

    HEAT TRANSFER IN METAL FILMS IRRADIATED BY COMBINED NANOSECOND LASER PULSE AND FEMTOSECOND PULSE TRAIN

    Yunpeng Ren, J. K. Chen*, Yuwen Zhang

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-7, 2012, DOI:10.5098/hmt.v3.2.3001

    Abstract Heat transfer in a copper film irradiated by a femtosecond (fs) laser pulse train and by an integrated dual laser beam of a nanosecond pulse with a fspulse train was studied using the semi-classical two-temperature model. The critical point model with three Lorentzian terms was employed to characterize transient optical properties for the laser energy deposition. The effects of pulse number and separation time on the thermal response were investigated. The results showed that with the same total energy in a fs-pulse train, more pulses for shorter separation time, e.g., 1 ps, and fewer pulses More >

  • Open Access

    ARTICLE

    An Operator Splitting Approximation Combined With The SUPG Method For Transport Equations With Nonlinear Reaction Term

    O. Baysal1, G. Tanoglu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 27-40, 2012, DOI:10.3970/cmes.2012.084.027

    Abstract In this work, an operator splitting method is proposed in order to obtain a stable numerical solution for transport equation with non-linear reaction term. We split the transport equation into a reaction part and an advection diffusion part. The former one which becomes a nonlinear ordinary differential equation can be approximated by the simple higher order integrator or solved exactly. The later one is approximated by the Streamline-Upwind Petrov-Galerkin (SUPG) method combined with the generalized Euler time integration (θ-method). Numerical results that illustrate the good performance of this method are reported. More >

  • Open Access

    ARTICLE

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Continuum/Discontinuum Transformation

    Li Shan, Ning Cui, Ming Cheng, Kaixin Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 353-384, 2012, DOI:10.3970/cmes.2012.083.353

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is established for modeling the elastoplastic behavior of solid materials. Failure criteria are introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from a continuum to a More >

  • Open Access

    ABSTRACT

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Impact Problems

    Li Shan, Ming Cheng, Kaixin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.019.087

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is estabilished for modeling the elastoplastic behavior of solid materials. A failure criterion is introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from continuum to discontinuum. More >

  • Open Access

    ABSTRACT

    Numerical solution for the elastic-large deflection behavior analysis of rectangular plates under combined loads and non-uniform lateral pressure using Galerkin method

    Ju Hye Park, Jeom Kee Paik, S.N. Atluri

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 69-70, 2011, DOI:10.3970/icces.2011.019.069

    Abstract The aim of the present paper is to develop a semi-analytical method which and quickly and accurately compute the ultimate strength response of rectangular plates under combined loads and non-uniform lateral pressure. It is assumed that the plating is simply supported at four edges which are kept straight. A unique feature of developed method was found to give reasonably accurate results for practical design purpose in terms of the large deflection analysis of plates under non uniformed lateral pressure. The present paper treated by analytically solving the nonlinear governing differential equations of the elastic large More >

  • Open Access

    ABSTRACT

    COMBINED ASYMPTOTIC METHOD FOR SEISMIC SOIL-STRUCTURE INTERACTION ANALYSIS OF THE MULTIPLY-SUPPORTED STRUCTURES

    Alexander G. TYAPIN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.018.051

    Abstract The author extends the previously proposed combined asymptotic method of seismic SSI analysis for the multiply-supported structures. One of the examples of such structures in Nuclear Power Plant is the transportation portal linked to the reactor building by horizontal beams.
    The first step still is (like for single-base structure) to develop the dynamic stiffness matrices condensed to the rigid contact surfaces in the frequency domain separately for the soil foundation and for the structure.
    For the soil foundation special computer codes like SASSI are used for this purpose. Seismic forces acting to the fixed basements… More >

  • Open Access

    ARTICLE

    A Combined Sensitive Matrix Method and Maximum Likelihood Method for Uncertainty Inverse Problems

    W. Zhang1, X. Han1,2, J. Liu1, Z. H. Tan1

    CMC-Computers, Materials & Continua, Vol.26, No.3, pp. 201-226, 2011, DOI:10.3970/cmc.2011.026.201

    Abstract The uncertainty inverse problems with insufficiency and imprecision in the input and/or output parameters are widely existing and unsolved in the practical engineering. The insufficiency refers to the partly known parameters in the input and/or output, and the imprecision refers to the measurement errors of these ones. In this paper, a combined method is proposed to deal with such problems. In this method, the imprecision of these known parameters can be described by probability distribution with a certain mean value and variance. Sensitive matrix method is first used to transform the insufficient formulation in the More >

  • Open Access

    ARTICLE

    Combined Thermal Radiation and Laminar Mixed Convection in a Square Open Enclosure with Inlet and Outlet Ports

    Mohamed Ammar Abbassi1,2, Kamel Halouani1, Xavier Chesneau3, Belkacem Zeghmati3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 71-96, 2011, DOI:10.3970/fdmp.2011.007.071

    Abstract Mixed convection inside a square cavity with inlet and outlet ports is numerically simulated considering thermal radiation effect. The non dimensional transfer equations, based on Boussinesq assumption and the radiative heat transfer equation are solved by the finite-volume-method and the TDMA algorithm. Results, presented for a gray fluid and a wide range of dimensionless numbers; Reynolds (Re=10-1000), Richardson (Ri=0-0.01), Boltzmann (Bo=0.1-100), radiation to conduction parameter (Rc=0.1-100), and optical thickness (τ = 0.1-10) show that the radiation significantly affects temperature distribution. Streamlines are also sensitive to radiative parameters (as optical thickness) but less than temperature. More >

Displaying 131-140 on page 14 of 154. Per Page