Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Automated Inspection of Char Morphologies in Colombian Coals Using Image Analysis

    Deisy Chaves1,5,*, Maria Trujillo1, Edward Garcia2, Juan Barraza2, Edward Lester3, Maribel Barajas4, Billy Rodriguez4, Manuel Romero4, Laura Fernández-Robles5

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 397-405, 2020, DOI:10.32604/iasc.2020.013916

    Abstract Precise automated determination of char morphologies formed by coal during combustion can lead to more efficient industrial control systems for coal combustion. Commonly, char particles are manually classified following the ICCP decision tree which considers four morphological features. One of these features is unfused material, and this class of material not characteristic of Colombian coals. In this paper, we propose new machine learning algorithms to classify the char particles in an image based system. Our hypothesis is that supervised classification methods can outperform the 4 ‘class’ ICCP criteria. In this paper we evaluate several morphological features and specifically assess the… More >

  • Open Access

    ARTICLE

    Combustion Characteristics of Solid Refuse Fuels from Different Waste Sources

    Jong Seong Chae1, Seok Wan Kim2, Tae In Ohm1,*

    Journal of Renewable Materials, Vol.8, No.7, pp. 789-799, 2020, DOI:10.32604/jrm.2020.010023

    Abstract In the production (as co-fuel or alone) of solid refuse fuel (SRF), knowledge about the characteristics of the raw materials is required for an ecofriendly and effective combustion process. SRFs are commonly produced by drying combustible waste and removing incombustible matter, resulting in a higher combustibility as compared to the original waste. However, the characteristics of SRFs may highly vary depending on where and from which materials they were produced. Thus, we investigated the characteristics of various SRFs using thermogravimetric analysis (TGA). As a TGA sample is commonly small, on the scale of milligrams, and, unlike homogeneous fuels, SRFs are… More >

  • Open Access

    ARTICLE

    Numerical Investigations on the Impact of Turbulent Prandtl Number and Schmidt Number on Supersonic Combustion

    Yongkang Zheng1,2,*, Chao Yan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 637-650, 2020, DOI:10.32604/fdmp.2020.09694

    Abstract The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics. As in many cases researchers set these parameters on the basis of purely empirical laws, assessing their impact (via parametric numerical simulations) is a subject of great importance. In the present work, in particular, two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers: Burrows-Kurkov case and DLR case. The numerical results indicate that these parameters influence ignition location.… More >

  • Open Access

    ARTICLE

    Experimental Study on the Influence Mechanism of Carbon Fiber/Epoxy Composite Reinforcement and Matrix on Its Fire Performance

    Lei Zhang1, Haiyan Wang1,*, Junpeng Zhang1, Zhi Wang2, Zuohui Xu1, Xinyu Gao1

    Journal of Renewable Materials, Vol.8, No.3, pp. 219-237, 2020, DOI:10.32604/jrm.2020.09096

    Abstract The effects of the number of layers, the arrangement of carbon fiber (CF) tow and the epoxy resin (ER) matrix on the fire performance of carbon fiber/epoxy composites (CFEC) were studied by a variety of experimental methods. The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites. The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties. The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of… More >

  • Open Access

    ARTICLE

    Numerical Analysis on Multi-Field Characteristics and Synergy in a Large-Size Annular Combustion Chamber with Double Swirlers

    Zaiguo Fu1, *, Huanhuan Gao1, Zhuoxiong Zeng1, Jiang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 805-830, 2020, DOI:10.32604/cmes.2020.08825

    Abstract In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine, we carried out numerical computation and analyses on the velocity, temperature and pressure fields in the chamber with double swirlers. The mathematical model of the coupling combustion, gas flow, and heat transfer process was established. The influences of the inlet swirling strength, fuel-air ratio and temperature of the premixed gas on the multi-field characteristics and synergy were investigated on the basis of field synergy theory. The results showed that the central recirculation zone induced by the inlet swirling… More >

  • Open Access

    ARTICLE

    An Experimental Study on Fuel Combustion Under External Irradiance

    Jianjun Liang1, Zhe Song2, Peili Zhang1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 445-458, 2019, DOI:10.32604/fdmp.2019.07951

    Abstract In order to investigate the burning characteristics of a 0# diesel and 3# jet fuel, a small-scale experimental bench mainly composed of a cone calorimeter was arranged. The heat release and burning rates were investigated changing the external irradiance in order to clarify the triadic relationship among these quantities. The effective heat of combustion of 0# diesel and 3# jet fuel were 38.89 MJ/kg and 43.15 MJ/kg, respectively, with the corresponding combustion efficiencies being 96.78% and 99.60% (the effective peak heat of combustion being 1.665 times the mean value for both types of fuel). According to our experimental results, the… More >

  • Open Access

    ARTICLE

    Simulation of Reactive Fluid Flow in a Solid Rocket Motor Combustion-Chamber with/without Nozzle

    W. A. El-Askary1,2, S. A. Wilson2, A. Hegab2

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 235-266, 2011, DOI:10.3970/cmes.2011.076.235

    Abstract In the present work, a complete simulation of reactive flow in the combustion chamber of a rocket motor equipped with convergent-divergent nozzle has been introduced. The model describes the combustion process inside the combustion chamber considering a steady premixed reactant gas injected through side porous walls of the combustion chamber. The products flow through a convergent-divergent nozzle with adiabatic impermeable walls. The reactants are treated as two-dimensional, multi-components, turbulent compressible flow. The local properties of the mixture are calculated and updated during the solution process. At the boundary of the combustion chamber, a constant mass flux and predefined properties are… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Entropy Generation in Hydrogen-Air Burner

    SouadMorsli1,*, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.4, pp. 342-353, 2015, DOI:10.3970/fdmp.2015.011.342

    Abstract The aim of this work is the numerical simulation of the combustion of hydrogen with air in a burner and the numerical solution of local entropy generation rate in the combustion chamber. The effects of equivalence ratio φ and oxygen percentage γ on combustion and entropy generation rates are studied for different φ(ranging from 0 to 1.0) and γ values (ranging from 10 to 30%). The predictions show that the increase of φ (or the decrease of λ ) reduces notably the reaction rate levels. The equations of continuity, of energy and momentum are solved by volume finite using commercial… More >

  • Open Access

    ARTICLE

    On the Application of Wavelets to One Dimensional Flame Simulations with Non-Unit Lewis Numbers

    R. Prosser1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 411-424, 2009, DOI:10.3970/fdmp.2009.005.411

    Abstract A novel wavelet-based method for the simulation of reacting flows on adaptive meshes is presented. The method is based on a subtraction algorithm, wherein the wavelet coefficients are calculated from the low resolution up (as opposed to the standard top-down approach). The advantage of this new method is that it allows the calculation of wavelet coefficients on sparse grids, and thus lends itself more readily to adaptive computational meshes than does the traditional wavelet algorithm. The approach is used to simulate a one-dimensional laminar pre-mixed flame with different Lewis numbers. The computational grid is adapted via the removal of grid… More >

Displaying 61-70 on page 7 of 69. Per Page