Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Computational Modeling of Reaction-Diffusion COVID-19 Model Having Isolated Compartment

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Asad Ejaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1719-1743, 2023, DOI:10.32604/cmes.2022.022235

    Abstract Cases of COVID-19 and its variant omicron are raised all across the world. The most lethal form and effect of COVID-19 are the omicron version, which has been reported in tens of thousands of cases daily in numerous nations. Following WHO (World health organization) records on 30 December 2021, the cases of COVID-19 were found to be maximum for which boarding individuals were found 1,524,266, active, recovered, and discharge were found to be 82,402 and 34,258,778, respectively. While there were 160,989 active cases, 33,614,434 cured cases, 456,386 total deaths, and 605,885,769 total samples tested. So far, 1,438,322,742 individuals have been… More >

  • Open Access

    ARTICLE

    Computational Modeling of Intergranular Crack Propagation in an Intermetallic Compound Layer

    Tong An1,2,*, Rui Zhou1,2, Fei Qin1,2,*, Pei Chen1,2, Yanwei Dai1,2, Yanpeng Gong1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1481-1502, 2023, DOI:10.32604/cmes.2023.022475

    Abstract A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds (IMCs) in solder joints. The effects of the grain aggregate morphology, the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated. The overall strength is predominantly determined by the weak grain interfaces; both the grain aggregate morphology and the weak grain interfaces control the crack configuration; the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of… More >

  • Open Access

    ARTICLE

    Hybrid Computational Modeling for Web Application Security Assessment

    Adil Hussain Seh1, Jehad F. Al-Amri2, Ahmad F. Subahi3, Md Tarique Jamal Ansari1, Rajeev Kumar4,*, Mohammad Ubaidullah Bokhari5, Raees Ahmad Khan1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 469-489, 2022, DOI:10.32604/cmc.2022.019593

    Abstract Transformation from conventional business management systems to smart digital systems is a recurrent trend in the current era. This has led to digital revolution, and in this context, the hardwired technologies in the software industry play a significant role However, from the beginning, software security remains a serious issue for all levels of stakeholders. Software vulnerabilities lead to intrusions that cause data breaches and result in disclosure of sensitive data, compromising the organizations’ reputation that translates into, financial losses as well. Most of the data breaches are financially motivated, especially in the healthcare sector. The cyber invaders continuously penetrate the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow in Aorta with Dilation: A Comparison between Laminar and LES Modeling Methods

    Lijian Xu1, Tianyang Yang2, Lekang Yin3, Ye Kong2, Yuri Vassilevski4,5, Fuyou Liang1,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 509-526, 2020, DOI:10.32604/cmes.2020.010719

    Abstract Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease. Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed, the majority of existing computational model studies adopted the laminar flow assumption (LFA) in the treatment of sub-grid flow variables. So far, it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation. In the present study, we addressed the issue in the context of a specific aortopathy, namely aortic dilation, which is… More >

  • Open Access

    ABSTRACT

    Computational Modeling of Human Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Tetralogy of Fallot

    Caili Li1,§, Christopher Baird2, Jing Yao3, Chun Yang4, Liang Wang5, Han Yu5, Tal Geva6, Dalin Tang5,*,7,§

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 59-59, 2019, DOI:10.32604/mcb.2019.06872

    Abstract Pulmonary valve stenosis (PVS) is one common right ventricular outflow tract obstruction problem in patients with tetralogy of Fallot (TOF). Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Dynamic computational models of normal pulmonary root (PR) with tri-leaflet and PR with BPV in patients with TOF were developed to investigate the effect of geometric structure of BPV on valve stress and strain distributions. The pulmonary root geometry included valvular leaflets, sinuses, interleaflet triangles and annulus. Mechanical properties of pulmonary valve leaflet were obtained from biaxial testing… More >

  • Open Access

    ABSTRACT

    Intravascular Ultrasound (IVUS)-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Mingchao Cai, Chun Yang, Mehmet H. Kural, Richard Bach, David Muccigrosso, Deshan Yang, Jie Zheng, Kristen L. Billiar, Dalin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 97-104, 2011, DOI:10.3970/icces.2011.019.097

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better risk assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. We propose a procedure where intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling are combined together to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. More >

  • Open Access

    ABSTRACT

    Computational Modeling of Cracked Plates Repaired with Adhesively Bonded Composite Patches Using the Boundary Element Method

    J. Useche1, P. Sollero2, E.L. Albuquerque2, L. Palermo3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 175-182, 2008, DOI:10.3970/icces.2008.006.175

    Abstract The computational fracture analysis of cracked thick plates repaired with adhesively bonded composite patches using a boundary element formulation is presented. The shear deformable cracked isotropic plate was modeled using the Reissner's plate theory. In order to model the repair, a three parameter boundary element formulation, based on Kirchhoff's theory for symmetric layered composite plates was established. Interaction forces and moments between the cracked plate and the composite repair were modeled as distributed loads. Coupling equations, based on kinematic compatibility and equilibrium considerations for the adhesive layer, were established. In-plane shear-deformable model with transversal stiffness was considered in order to… More >

  • Open Access

    ABSTRACT

    Image-Based Computational Modeling for Cardiovascular Diseases with Potential Clinical Applications

    Dalin Tang1, Chun Yang2, Pedro N. del Nido3, Tal Geva3, Chun Yuan4, Tom Hatsukami5, Fei Liu4, Jie Zheng6, Pamela K. Woodard6

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 1-6, 2007, DOI:10.3970/icces.2007.001.001

    Abstract Image-based computational models for blood flow in the heart and diseased arteries have been developed for disease assessment and potential clinical applications. Models with fluid-structure interactions for human right ventricle (RV) remodeling surgery design, carotid and coronary atherosclerotic plaques and abdominal aortic aneurysm (AAA) were presented. Organ morphology, material properties, governing equations, proper initial and boundary conditions, controlling factors and research focuses for each model were discussed. More >

  • Open Access

    ARTICLE

    Computational Modeling of Human Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Tetralogy of Fallot

    Caili Li1, §, Christopher Baird2, Jing Yao3, Chun Yang4, Liang Wang5, Han Yu5, Tal Geva6, Dalin Tang5*, 7, §

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 227-244, 2019, DOI:10.32604/cmes.2019.06036

    Abstract Pulmonary valve stenosis (PVS) is one common right ventricular outflow tract obstruction problem in patients with tetralogy of Fallot (TOF). Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Dynamic computational models of normal pulmonary root (PR) with tri-leaflet and PR with BPV in patients with TOF were developed to investigate the effect of geometric structure of BPV on valve stress and strain distributions. The pulmonary root geometry included valvular leaflets, sinuses, interleaflet triangles and annulus. Mechanical properties of pulmonary valve leaflet were obtained from biaxial testing… More >

  • Open Access

    ARTICLE

    Computational Modeling of Gas-Particle Two-Phase Jet by a 3-D Vortex Method

    T.Tsukiji1, Y.Yamamoto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 235-242, 2005, DOI:10.3970/cmes.2005.009.235

    Abstract The grid free computational model of gas-particle two-phase jet flow using a 3-D vortex method is presented. The calculated results using the present method are compared with the previous experimental and the calculated results using DNS. The interaction between the particle and gas-phase is considered using Lagrangian method. It is found that the present computational model of gas-particle two-phase jet flow using the 3-D vortex method is very useful for the prediction of the physical properties of the two-phase jet flow and for saving the computational time. More >

Displaying 1-10 on page 1 of 23. Per Page