Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    An Experimental Study on Enhancing Cooling Rates of Low Thermal Conductivity Fluids Using Liquid Metals

    S.-A. B. Al Omari1,2, E. Elnajjar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 91-109, 2013, DOI:10.3970/fdmp.2013.009.091

    Abstract In a previous numerical study (Al Omari, Int. Communication in Heat and Mass Transfer, 2011) the heat transfer enhancement between two immiscible liquids with clear disparity in thermal conductivity such as water and a liquid metal (attained by co- flowing them in a direct contact manner alongside each other in mini channel) was demonstrated. The present work includes preliminary experimental results that support those numerical findings. Two immiscible liquids (hot water and liquid gallium) are allowed experimentally to exchange heat (under noflow conditions) in a stationary metallic cup where they are put in direct contact. The experimental results confirm the… More >

  • Open Access

    ARTICLE

    Phonon Transport of Rough Si/Ge Superlattice Nanotubes

    Yuhang Jing1, Ming Hu2,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 43-59, 2013, DOI:10.3970/cmc.2013.038.043

    Abstract Nanostructuring of thermoelectric materials bears promise for manipulating physical parameters to improve the energy conversion efficiency of thermoelectrics. In this paper the thermal transport in Si/Ge superlattice nanotubes is investigated by performing nonequilibrium molecular dynamics simulations aiming at realizing low thermal conductivity by surface roughening. Our calculations revealed that the thermal conductivity of Si/Ge superlattice nanotubes depends nonmonotonically on periodic length and increases as the wall thickness increases. However, the thermal conductivity is not sensitive to the inner diameters due to the strong surface scattering at thin wall thickness. In addition, introducing roughness onto the superlattice nanotubes surface can destroy… More >

  • Open Access

    ARTICLE

    An LGEM to Identify Time-Dependent Heat Conductivity Function by an Extra Measurement of Temperature Gradient

    Chein-Shan Liu1,2

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 81-96, 2008, DOI:10.3970/cmc.2008.007.081

    Abstract We consider an inverse problem for estimating an unknown heat conductivity parameter α(t) in a heat conduction equation Tt(x,t) = α(t)Txx(x,t) with the aid of an extra measurement of temperature gradient on boundary. Basing on an establishment of the one-step Lie-group elements G(r) and G(l) for the semi-discretization of heat conduction equation in time domain, we can derive algebraic equations from G(r) = G(l). The new method, namely the Lie-group estimation method (LGEM), is examined through numerical examples to convince that it is highly accurate and efficient; the maximum estimation error is smaller than 10-5 for smooth parameter and for… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Analysis of High-temperature Molten-salt Electrolytes in Thermal Batteries

    C. F. Chen1, H. Y. Li1, C. W. Hong1,2

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 145-163, 2015, DOI:10.3970/cmc.2015.046.145

    Abstract The purpose of this research is to improve the discharge rate and to predict the melting point of high-temperature molten-salt electrolytes in thermal batteries. Using molecular dynamics (MD) simulation techniques, we tried to develop some novel ternary and quaternary molten electrolytes to replace conventional binary LiCl-KCl ones. The simulation results with greater ionic conductivity and lower melting point are consistent with experimental results reported by previous literatures. The MD results have found that the lithium ion mole fraction in the molten-salt electrolytes affects the ionic conductivity significantly. This paper demonstrates that MD simulation techniques are a useful tool to screen… More >

  • Open Access

    ARTICLE

    Theoretical Modeling of the Radiative Properties and Effective Thermal Conductivity of the Opacified Silica Aerogel

    Zichun Yang1,2,3, Gaohui Su1,4, Fengrui Sun1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 271-292, 2013, DOI:10.3970/cmc.2013.036.271

    Abstract In this paper, we investigate the radiative properties and the effective thermal conductivity (ETC) of the opacified silica aerogel by theoretical method. The radiative properties of the opacified silica aerogel are obtained by the modified Mie Scattering Theory that is used for particle scattering in absorbing medium. The modified gamma distribution is used to take account of the non-uniformity of the particle size. The solid thermal conductivity of the composite material is obtained by considering the scale effect of the particles. Based on these calculated thermophysical properties the coupled heat conduction and radiation through the evacuated opacified aerogel are solved… More >

  • Open Access

    ARTICLE

    Using a Lie-Group Adaptive Method for the Identification of a Nonhomogeneous Conductivity Function and Unknown Boundary Data

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 17-40, 2011, DOI:10.3970/cmc.2011.021.017

    Abstract Only the left-boundary data of temperature and heat flux are used to estimate an unknown parameter function α(x) in Tt(x,t) = ∂(α(x)Tx)/∂x + h(x,t), as well as to recover the right-boundary data. When α(x) is given the above problem is a well-known inverse heat conduction problem (IHCP). This paper solves a mixed-type inverse problem as a combination of the IHCP and the problem of parameter identification, without needing to assume a function form of α(x) a priori, and without measuring extra data as those used by other methods. We use the one-step Lie-Group Adaptive Method (LGAM) for the semi-discretizations of… More >

  • Open Access

    ARTICLE

    Computation of Dyadic Green's Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity

    V.G.Yakhno1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 1-16, 2011, DOI:10.3970/cmc.2011.021.001

    Abstract Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions… More >

  • Open Access

    ARTICLE

    Computer Modeling of Ionic Conductivity in Low Temperature Doped Ceria Solid Electrolytes

    Shu-Feng Lee1, Che-Wun Hong1,2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 223-236, 2009, DOI:10.3970/cmc.2009.012.223

    Abstract Solid oxides, such as ceria (CeO2) doped with cations of lower valance, are potential electrolytes for future solid oxide fuel cells. This is due to the theoretically high ionic conductivity at low operation temperature. This paper investigates the feasibility of two potential electrolytes which are samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) to replace the traditional yttria-stablized zirconia (YSZ). Molecular simulation techniques were employed to study the influence of different dopant concentrations at different operation temperatures on the ionic conductivity from the atomistic perspective. Simulation results show that the optimized ionic conductivity occurs at 11.11mol% concentration using both dopants of… More >

  • Open Access

    ARTICLE

    Atomistic Modeling of the Structural and Thermal Conductivity of the InSb

    José Pedro Rino1,Giovano de Oliveira Cardozo1, Adalberto Picinin1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 145-156, 2009, DOI:10.3970/cmc.2009.012.145

    Abstract A new parametrization for the previous empirical interatomic potential for indium antimonite is presented. This alternative parametrization is designed to correct the energetic sequence of structures. The effective empirical interatomic potential proposed consists of two and three body interactions which has the same functional form of the interatomic potential proposed by Vashishta et. al. to study other semiconductors (Branicio et al., 2003; Ebbsjo et al., 2000; Shimojo et al., 2000; Vashishta et al., 2008). Molecular dynamics simulations (MD) are performed to study high pressure phases of InSb up to 70 GPa and its thermal conductivity as a function of temperature.… More >

Displaying 91-100 on page 10 of 99. Per Page