Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Natural Rubber-Based Ionogels

    TK. N. Tran1,2, A. Guyomard-Lack3, C. Cerclier3, B. Humbert3, G. Colomines1, J-F. Pilard2, R. Deterre1, J. Le Bideau3,*, E. Leroy4,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 251-258, 2018, DOI:10.7569/JRM.2017.634174

    Abstract Natural rubber (NR), besides being an abundant renewable resource for the elastomer industry, can be a potential resource for the design of innovative biobased polymer networks. The present work is based on "telechelic" liquid natural rubber oligomers obtained by controlled chemical degradation of NR. The chain ends of such oligomers can then be functionalized (with acrylate functions in the present case) and reacted with multifunctional crosslinkers in order to form networks. What's more, the initial solubility of such thermosetting system in an ionic liquid (IL) can be used for the formulation of ionogels. Such solid networks typically containing 80% of… More >

  • Open Access

    ARTICLE

    Cellulose Acetate/Carbon Nanotube Composites by Melt Mixing

    A. Delgado-Lima, M. C. Paiva*, A. V. Machado

    Journal of Renewable Materials, Vol.5, No.2, pp. 145-153, 2017, DOI:10.7569/JRM.2017.634104

    Abstract Cellulose acetate (CA) is produced from a natural polymer and presents excellent properties, finding applications in a variety of areas. Unlike cellulose, CA is melt processable and may be molded into parts and formed into fibers or films. In this context, the production of conductive CA composites that may be processable and integrated into parts to provide specific functionalities is an area of increasing interest. The present work aims to prepare electrically conductive composites based on CA and carbon nanotubes (CNTs) by melt mixing. The nanocomposites were produced with pure and pyrrolidine-functionalized nanotubes, using a batch mixer and a twin-screw… More >

  • Open Access

    ARTICLE

    Karanja Oil Polyol and Rigid Polyurethane Biofoams for Thermal Insulation

    M. Himabindu1, K. Kamalakar2, MSL Karuna2, Aruna Palanisamy1*

    Journal of Renewable Materials, Vol.5, No.2, pp. 124-131, 2017, DOI:10.7569/JRM.2016.634137

    Abstract Rigid polyurethane biofoams were prepared from karanja polyol which was derived by ring-opening reaction of epoxidized karanja oil. The polyol, which had a hydroxyl value of 186 mg KOH/g, was thoroughly characterized and the structure confirmed by spectral techniques. The foam formulations were developed to achieve shrinkage-free foams with water used as the blowing agent. The resulting foams were characterized for their mechanical properties like density, compression strength and flexural strength. The densities and mechanical properties, such as compression and flexural strength, varied with the amount of methylene diphenyl diisocyanate (MDI) for a fixed amount of polyol and other additives… More >

  • Open Access

    ARTICLE

    First Principles Molecular Dynamics Computation on Ionic Transport Properties in Molten Salt Materials

    Chung-Fu Chen1, Yi-Chia Cheng1, Che-Wun Hong1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.3, pp. 263-283, 2015, DOI:10.3970/cmes.2015.109.263

    Abstract Based on the Hellmann-Feynman theorem, which integrates the molecular dynamics simulation with computational quantum mechanics, this research simulates the ionic transport in the LiCl-KCl molten salt materials using so called “first principles molecular dynamics (FPMD)” technique without employing an empirical potential model. The main purpose of this computational FPMD focuses on the evaluation of important transport properties, such as diffusion coefficient, ionic conductivity, shear viscosity, and thermal conductivity, using the Green-Kubo relationship. All simulation results agree well with experimental data published in existing literatures within an acceptable range. FPMD calculations are proved to be a powerful tool for prediction of… More >

  • Open Access

    ARTICLE

    Conjugate Heat Transfer in Uniformly Heated Enclosure Filled with Micropolar Fluid

    H. Imtiaz1, F. M. Mahfouz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.3, pp. 171-192, 2015, DOI:10.3970/cmes.2015.108.171

    Abstract This paper investigates numerically the conjugate heat transfer in a concentric enclosure that is formed between two concentric cylinders and filled with micropolar fluid. The wall of inner cylinder is considerably thick, while the wall of outer cylinder is very thin. The inner cylinder is heated from inner side through constant heat flux, whereas the outer cylinder is cooled and maintained at constant temperature. The induced buoyancy driven flow and associated conjugate heat transfer are predicted numerically by solving flow and energy governing equations considering a combination of finite difference and Fourier spectral methods. The study investigates the effect of… More >

  • Open Access

    ARTICLE

    Effect of CNT Agglomeration on the Electrical Conductivity and Percolation Threshold of Nanocomposites: A Micromechanics-based Approach

    B.J. Yang1, K.J. Cho1, G.M. Kim1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 343-365, 2014, DOI:10.3970/cmes.2014.103.343

    Abstract The addition of carbon nanotubes (CNTs) to a matrix material is expected to lead to an increase in the effective electrical properties of nanocomposites. However, a CNT entanglement caused by the matrix viscosity and the high aspect ratio of the nanotubes often inhibits the formation of a conductive network. In the present study, the micromechanics-based model is utilized to investigate the effect of CNT agglomeration on the electrical conductivity and percolation threshold of nanocomposites. A series of parametric studies considering various shapes and curviness distributions of CNTs are carried out to examine the effects of entanglement on the electrical performance… More >

  • Open Access

    ARTICLE

    Electrostatic potential in a bent flexoelectric semiconductive nanowire

    Ying Xu1, Shuling Hu1, Shengping Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.5, pp. 397-408, 2013, DOI:10.3970/cmes.2013.091.397

    Abstract Flexoelectricity presents a strong size effect, and should not be ignored for nanodevices. In this paper, the flexoelectric effect is taken into account to investigate the electrostatic potential distribution in a bent flexoelectric semiconductive nanowire, and the numerical solution is obtained by using the finite difference method. The effect of donor concentration on the electrostatic potential are also investigated. The results show that, the flexoelectricity increases the value of the voltage on the cross section. The flexoelectric effect is varied with the size, i.e. when the radius of the nanowire is small the flexoelectric effect is significant. It is also… More >

  • Open Access

    ARTICLE

    Application of Homotopy Analysis Method for Periodic Heat Transfer in Convective Straight Fins with Temperature-Dependent Thermal Conductivity

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 155-170, 2012, DOI:10.3970/cmes.2012.084.155

    Abstract In this paper, the homotopy analysis method is applied to analyze the heat transfer of the oscillating base temperature processes occurring in a convective rectangular fin with variable thermal conductivity. This method is a powerful and easy-to-use tool for non-linear problems and it provides us with a simple way to adjust and control the convergence region of solution series. Without the need of iteration, the obtained solution is in the form of an infinite power series and the results indicated that the series has high accuracy by comparing it with those generated by the complex combination method. More >

  • Open Access

    ARTICLE

    Numerical Design of Random Micro-Heterogeneous Materials with Functionally-Graded Effective Thermal Conductivities Using Genetic Algorithms and the Fast Boundary Element Method

    Marco Dondero1, Adrián P. Cisilino1,2, J. Pablo Tomba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 225-246, 2011, DOI:10.3970/cmes.2011.078.225

    Abstract This paper introduces a numerical methodology for the design of random micro-heterogeneous materials with functionally graded effective thermal conductivities (ETC). The optimization is carried out using representative volume elements (RVEs), a parallel Genetic Algorithm (GA) as optimization method, and a Fast Multipole Boundary Element Method (FMBEM) for the evaluation of the cost function. The methodology is applied for the design of foam-like microstructures consisting of random distributions of circular insulated holes. The temperature field along a material sample is used as objective function, while the spatial distribution of the holes is the design variable. There are presented details of the… More >

  • Open Access

    ARTICLE

    New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike

    Mahdi Izadi1, Mohd Zainal Abidin Ab. Kadir1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.1, pp. 1-12, 2010, DOI:10.3970/cmes.2010.067.001

    Abstract Evaluation of electric field due to indirect lightning strike is an interesting subject. Calculation of electric and magnetic fields in time domain with the consideration of ground conductivity effect in the shortest possible time is an important objective. In this paper, using dipole method, Maxwell's equation and Cooray-Rubinstein formula, a new method for calculation of electric field in time domain is proposed. In addition, this proposed algorithm can also be used to evaluate the effect at the far distance cases of observation point from lightning channel. More >

Displaying 71-80 on page 8 of 100. Per Page