Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

    Parth Khandelwal1, Harshit2, Indranil Manna1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1727-1755, 2024, DOI:10.32604/cmc.2024.042752

    Abstract Metallic alloys for a given application are usually designed to achieve the desired properties by devising experiments based on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises. However, the influence of process parameters and material properties is often non-linear and non-colligative. In recent years, machine learning (ML) has emerged as a promising tool to deal with the complex interrelation between composition, properties, and process parameters to facilitate accelerated discovery and development of new alloys and functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles, to design novel copper alloys for achieving… More > Graphic Abstract

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

  • Open Access

    ARTICLE

    Study of Optical, Electrical and Acoustical Properties of CuSO4 Doped Polyvinyl Pyrrolidone (PVP) based Polymer Solutions

    RAJEEV KUMAR

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 131-142, 2020, DOI:10.32381/JPM.2020.37.3-4.2

    Abstract The optical, electrical and acoustical properties of a polymer solution based on polyvinyl pyrrolidone (PVP) doped with different concentration of cupric sulphate (CuSO4 ) were studied.UVVIS spectroscopy results reflected that absorption increases in asymmetric manner and the absorption peak showed red shift with increasing Cu ions concentration. The optical band gap (direct and indirect) was found to decrease with increase in Cu ions concentration in the polymer due to increase in the density of localized states in the band-gap.The value of Urbach energy is also evaluated from the transmission spectra and the activation energies are also evaluated from the conductivity… More >

  • Open Access

    ARTICLE

    Sulfonated Poly (Ether Ether Ketone) and its Blended Nanocomposite for Proton Conducting Membranes

    ABDUL KALAM AZAD1, ARVIND GUPTA3, LAKSHMI UNNIKRISHNAN2,3,*, SMITA MOHANTY3, SANJAY KUMAR NAYAK2,3

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 121-136, 2021, DOI:10.32381/JPM.2021.38.1-2.10

    Abstract Proton conducting hydrophilic channels were created successfully in poly (ether ether ketone) (PEEK) by means of step by step modification followed by the optimization of sulfonation process (SPEEK70, DS=68.57%). Although highly sulfonated PEEK has excellent proton conductivity, it lacks in mechanical stability due to low swelling degree. Therefore, a potential method has been proposed in this work by integrating poly (sulfone) and nanosilica (SiO2 ) into SPEEK matrix. SPEEK 70 (S) was utilized to prepare blended nanocomposite membranes for further enhancement of hydrophilic channels. The blended nanocomposite membranes are, SPEEK/SiO2 as SNS, SPEEK blended with poly (sulfone) as SP, SPEEK… More >

  • Open Access

    ARTICLE

    Enhanced Mechanical and Electrical Properties of Styrene Butadiene Rubber Nanocomposites with Graphene Platelet Nano-powder

    ARUN KUMAR M, JAYAKUMARI LS*, RAMJI CHANDRAN

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 141-156, 2023, DOI:10.32381/JPM.2023.40.3-4.2

    Abstract Nanocomposites are very important materials because it imparts superior properties than other composites with low level of filler loading. Styrene butadiene rubber (SBR) is a non-polar rubber which acts as an insulator and has low electrical conductivity. Graphene platelet nano-powder from 0.1 to 1.25 phr level is incorporated into SBR rubber in order to improve the electrical properties. Comparative studies on electrical and mechanical properties of styrene butadiene rubber with graphene platelet nano-powder (GPN) by varying the filler content are made. The incorporation of Graphene platelet nano-powder increases the electrical conductivity in styrene butadiene rubber. It has been observed that… More >

  • Open Access

    ARTICLE

    Effect of Sulfuric Acid on the Physiochemical Properties of Chitosan-PVA Blend for Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb, PRAGYAN SENAPATIc, SWETAK ABHISEK MOHAPATRAb

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 89-109, 2022, DOI:10.32381/JPM.2022.39.1-2.6

    Abstract In this work, we have successfully cross-linked the different weight ratio of Chitosan-PVA blend with sulfuric acid. The effect of cross-linker on the properties of blends are studied by using different experimental technique. The cross-linked membrane provides higher ion exchange capacity due to the procurement of extra ionic hooping sites in the membrane. The compatibility of the blends are confirmed from the FTIR and DSC analysis. The crosslinking reaction fastening the phase transition behavior of the blends which reduces the glass transition temperature. The highly compatiblized cross-linked blend provides higher tensile strength and lower modulus at moderate temperature. The significant… More >

  • Open Access

    ARTICLE

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

    Hanumesh Vaidya1, Fateh Mebarek-Oudina2,*, K. V. Prasad1, Rajashekhar Choudhari3, Neelufer Z. Basha1, Sangeeta Kalal1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 65-78, 2024, DOI:10.32604/fhmt.2024.047879

    Abstract This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor. The BRS variable is utilized for the purpose of analyzing these characteristics. The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components. The Keller-Box technique is employed to solve the ordinary differential equations (ODEs) and derive the corresponding mathematical outcomes. Figures and tables present the relationship between growth characteristics and various parameters such as temperature, velocity, skin friction coefficient, concentration, Sherwood number,… More > Graphic Abstract

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization of the FEM, these… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    ARTICLE

    EXAMINATION OF THERMAL PROPERTIES OF CARBON-CARBON AND GRAPHATIZED CARBON-CARBON COMPOSITES

    Melanie Patricka, Messiha Saada,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-8, 2012, DOI:10.5098/hmt.v3.4.3007

    Abstract Thermal characterization is essential to the proper assignment of composites to specific applications. Specific heat, thermal diffusivity, and thermal conductivity are critical in the engineering design process and in the analysis of aerospace vehicles, space systems, power generation, transportation systems, and energy storage devices including fuel cells. This paper examines the thermal properties through the thickness of Carbon-Carbon and the impact of Graphitization is explored. Following ASTM standards, the Flash Method and Differential Scanning Calorimetry measured thermal diffusivity and specific heat respectively. These measurements and density data allowed for the computation of thermal conductivity. More >

  • Open Access

    ARTICLE

    THERMAL CONDUCTIVITY OF BINARY MIXTURES OF GASES

    Etim S. Udoetok*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-5, 2013, DOI:10.5098/hmt.v4.2.3008

    Abstract A model for the coefficient of thermal conductivity of binary mixtures of gases has been derived. The theory presented is based on the assumption of random fluctuations between two possible extreme arrangements of a binary gas mixture. The results obtained from the new model compared favorably with published experimental results. The proposed new model provides a simple approach without sacrificing much accuracy compared to previous models. It is applicable to any binary mixture of gases which includes monoatomic gas mixture, polyatomic gas mixtures and mixtures involving rare gases. The new model can be very useful in analysis like combustion where… More >

  • Open Access

    ARTICLE

    THERMAL CHARACTERIZATION OF AS4/3501-6 CARBON-EPOXY COMPOSITE

    Bradley Dolemana , Messiha Saada,*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-8, 2013, DOI:10.5098/hmt.v4.2.3006

    Abstract Thermal diffusivity, specific heat, and thermal conductivity are important thermophysical properties of composite materials. These properties play a significant role in the engineering design process of space systems, aerospace vehicles, transportation, energy storage devices, and power generation including fuel cells. This paper examines these thermophysical properties of the AS4/3501-6 composite using the xenon flash method to measure the thermal diffusivity in accordance with ASTM E1461 and differential scanning calorimetry to measure the specific heat in accordance with ASTM E1269. The thermal conductivity was then calculated using a proportional relationship between the density, specific heat, and thermal diffusivity. More >

Displaying 1-10 on page 1 of 99. Per Page