Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (136)
  • Open Access

    ARTICLE

    Tensoelectric properties of (BixSb1-x)2Te3 films under the influence of a microwave field

    R. U. Siddikov*, Kh. M. Sulaymonov, N. Kh. Yuldashev

    Chalcogenide Letters, Vol.22, No.10, pp. 855-862, 2025, DOI:10.15251/CL.2025.2210.855

    Abstract This paper presents the results of an experimental study of the tens metric and dielectric properties of polycrystalline (BixSb1-x)2Te3 films in the temperature range of 280−480 K and at microwave frequencies. The temperature dependences of the specific conductivity, impedance, and permittivity under the action of uniaxial static deformation are analyzed. The deformation phenomena detected in polycrystalline films under the action of a microwave field are qualitatively interpreted based on the effective medium theory. More >

  • Open Access

    ARTICLE

    Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments

    Ilze Irbe1,*, Laura Andze1, Inese Filipova1,2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2139-2154, 2025, DOI:10.32604/jrm.2025.02025-0107 - 24 November 2025

    Abstract Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites. This study investigates the development and characterization of sustainable egg packaging waste (EPW) biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder. Three formulations were prepared using EPW as the primary substrate, with and without the addition of hemp shives and sawdust as co-substrates. The composites were evaluated for granulometry, density, mechanical strength, hygroscopic behavior, thermal conductivity, and fire performance using cone calorimetry. Biocomposites, composed exclusively of egg packaging waste,… More >

  • Open Access

    ARTICLE

    Experimental Study on Properties of Nano-Silicon Modified Microencapsulated Phase Change Materials Mortar

    Jian Xia1,2, Xianzhong Hu1, Yan Li1, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1489-1506, 2025, DOI:10.32604/sdhm.2025.065997 - 17 November 2025

    Abstract Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. This study innovatively addresses this critical limitation by introducing nano-silicon (NS) as a modifier to fill pores and promote hydration in MPCM mortar. Twenty-five mixes with varying NS content from 0 to 4 weight percent and different MPCM contents were comprehensively tested for flowability, compressive strength, thermal conductivity, thermal energy storage via Differential Scanning Calorimetry, and microstructure via Scanning Electron Microscopy. Key quantitative results showed MPCM reduced mortar… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Heat and Mass Transfer in Tangent Hyperbolic Fluids Using a Two-Stage Exponential Integrator with Compact Spatial Discretization

    Mairaj Bibi1, Muhammad Shoaib Arif 2, Yasir Nawaz3, Nabil Kerdid4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 537-569, 2025, DOI:10.32604/cmes.2025.070362 - 30 October 2025

    Abstract This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity, thermal radiation, and coupled heat and mass transfer effects. A modified two-stage Exponential Time Integrator is introduced for temporal discretization, providing second-order accuracy in time. A compact finite difference method is employed for spatial discretization, yielding sixth-order accuracy at most grid points. The proposed framework ensures numerical stability and convergence when solving stiff, nonlinear parabolic systems arising in fluid flow and heat transfer problems. The novelty of the work lies in combining exponential integrator schemes with compact… More >

  • Open Access

    ARTICLE

    Impact of Proppant Embedding on Long-Term Fracture Conductivity and Shale Gas Production Decline

    Junchen Liu1, Feng Zhou1, Xiaofeng Lu1, Xiaojin Zhou2, Xianjun He1, Yurou Du3, Fuguo Xia1, Junfu Zhang4, Weiyi Luo4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2613-2628, 2025, DOI:10.32604/fdmp.2025.069772 - 30 October 2025

    Abstract In shale gas reservoir stimulation, proppants are essential for sustaining fracture conductivity. However, increasing closing stress causes proppants to embed into the rock matrix, leading to a progressive decline in fracture permeability and conductivity. Furthermore, rock creep contributes to long-term reductions in fracture performance. To elucidate the combined effects of proppant embedding and rock creep on sustained conductivity, this study conducted controlled experiments examining conductivity decay in propped fractures under varying closing stresses, explicitly accounting for both mechanisms. An embedded discrete fracture model was developed to simulate reservoir production under different conductivity decay scenarios, while… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

    Chao Gui1,2, Wanying Chang3, Yaping Liu1,*, Leren Tao3, Daoming Shen1, Mengyi Ge1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1621-1637, 2025, DOI:10.32604/fhmt.2025.072268 - 31 October 2025

    Abstract Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces. Conventional models often overlook structural anisotropy and dynamic boundary progression, while experimental determination of key parameters under cryogenic conditions remains difficult. To address these, this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface, which effectively handles continuous computational domain deformation. Additionally, specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties. A novel non-contact gravimetric system More > Graphic Abstract

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

  • Open Access

    ARTICLE

    Influence of LiCF3SO3 on the Conductivity and Other Characteristics of Methylcellulose/PVA Blend-Based Electrolytes

    Nurrul Asyiqin Shamsuri1, Zamil Khairuddin2, Muhamad Hafiz Hamsan3, Norhana Abdul Halim4, Mohd Fakhrul Zamani Kadir1,5, Muhammad Fadhlullah Shukur6,7,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 729-742, 2025, DOI:10.32604/jpm.2025.069060 - 30 September 2025

    Abstract Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications. However, high crystallinity and poor ionic conductivity are the main barriers restricting their daily application. In this study, we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol (MC-PVA) blend as host material and lithium trifluoromethanesulfonate (LiCF3SO3) as dopant, which was prepared using the solution-casting method. The electrochemical impedance spectroscopy (EIS) analysis revealed a maximum conductivity of 5.42 × 10−6 S cm−1 with 40 wt.% LiCF3SO3. The key findings demonstrated that the variation in the dielectric loss (εi) and dielectric constant (εr) was… More >

  • Open Access

    ARTICLE

    Migration and Distribution Laws of Proppants in Complex Lithology Reservoirs in Offshore Areas

    Mao Jiang1, Jianshu Wu1, Chengyong Peng1, Xuesong Xing1, Yishan Lou2,3, Yi Liu2,3,*, Shanyong Liu2,3

    Energy Engineering, Vol.122, No.10, pp. 4019-4034, 2025, DOI:10.32604/ee.2025.067236 - 30 September 2025

    Abstract Fracture conductivity is a key factor to determine the fracturing effect. Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures. To address challenges associated with the low-permeability reservoirs in the Lufeng Oilfield of the South China Sea—including high heterogeneity, complex lithology, and suboptimal fracturing outcomes—JRC (Joint Roughness Coefficient) was employed to quantitatively characterize the lithological properties of the target formation. A CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) two-way coupling approach was then utilized to construct a fracture channel model that simulates proppant transport dynamics. The proppant particle size under different… More >

  • Open Access

    PROCEEDINGS

    Experimental Study on the Flow Conductivity of Acid Fracture in Permian Cloud-Ash Interacting Reservoirs in the Sichuan Basin

    Guoqiang Long*, Wenling Chen, Yanghui Ou, Shuting Yang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010487

    Abstract China's marine carbonate rocks are widely distributed, the reservoir is deeply buried, high temperature, high closure pressure, and the reservoir has strong non-homogeneity, porosity and permeability are generally low, while the natural cracks and dissolution pore (hole) is more developed. Currently, carbonate reservoir reforming technology is developing rapidly, and more and more marine carbonates can be developed. The Permian Maokou-Qixia Formation in the Sichuan Basin has good hydrocarbon source rocks of marine carbonates. The Longniusi Hechuan block of Permian Maokou-Qixia Formation develops a set of carbonate reservoirs interacting with leopard dolomite and mud crystal clastic… More >

  • Open Access

    ARTICLE

    Development of Loose-Fill Thermal Insulation Materials from Annual Plant Residues Using Low-Concentration Chemimechanical Pulping

    Andris Berzins1,2, Ramunas Tupciauskas1,*, Gunars Pavlovics1, Martins Andzs1

    Journal of Renewable Materials, Vol.13, No.6, pp. 1189-1207, 2025, DOI:10.32604/jrm.2025.02024-0067 - 23 June 2025

    Abstract This study examines the development of loose-fill thermal insulation materials derived from annual plant residues, such as wheat straw, water reeds, and corn stalks, processed using the chemimechanical pulping (CMP) technique. The chopped plants were soda-cooked for 30 min, varying NaOH concentration (2%–8% on a dry basis of biomass), and mechanically refined using different disc types. The CMP process enhances the homogeneity and stability of defibrated material, yielding improved insulation properties compared to untreated chopped raw materials. Chemical analysis revealed that CMP increases cellulose content and reduces lignin levels, enhancing water retention and vapor diffusion… More > Graphic Abstract

    Development of Loose-Fill Thermal Insulation Materials from Annual Plant Residues Using Low-Concentration Chemimechanical Pulping

Displaying 11-20 on page 2 of 136. Per Page