Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    REVIEW

    AI Fairness–From Machine Learning to Federated Learning

    Lalit Mohan Patnaik1,5, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1203-1215, 2024, DOI:10.32604/cmes.2023.029451

    Abstract This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization has further reinforced such worries.… More >

  • Open Access

    ARTICLE

    A Method of Integrating Length Constraints into Encoder-Decoder Transformer for Abstractive Text Summarization

    Ngoc-Khuong Nguyen1,2, Dac-Nhuong Le1, Viet-Ha Nguyen2, Anh-Cuong Le3,*

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 1-18, 2023, DOI:10.32604/iasc.2023.037083

    Abstract Text summarization aims to generate a concise version of the original text. The longer the summary text is, the more detailed it will be from the original text, and this depends on the intended use. Therefore, the problem of generating summary texts with desired lengths is a vital task to put the research into practice. To solve this problem, in this paper, we propose a new method to integrate the desired length of the summarized text into the encoder-decoder model for the abstractive text summarization problem. This length parameter is integrated into the encoding phase at each self-attention step and… More >

  • Open Access

    ARTICLE

    Adaptive H Filtering Algorithm for Train Positioning Based on Prior Combination Constraints

    Xiuhui Diao1, Pengfei Wang1,2,*, Weidong Li2, Xianwu Chu2, Yunming Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1795-1812, 2024, DOI:10.32604/cmes.2023.030008

    Abstract To solve the problem of data fusion for prior information such as track information and train status in train positioning, an adaptive H filtering algorithm with combination constraint is proposed, which fuses prior information with other sensor information in the form of constraints. Firstly, the train precise track constraint method of the train is proposed, and the plane position constraint and train motion state constraints are analysed. A model for combining prior information with constraints is established. Then an adaptive H filter with combination constraints is derived based on the adaptive adjustment method of the robustness factor. Finally, the positioning… More >

  • Open Access

    ARTICLE

    Binary Oriented Feature Selection for Valid Product Derivation in Software Product Line

    Muhammad Fezan Afzal1, Imran Khan1, Javed Rashid1,2,3, Mubbashar Saddique4,*, Heba G. Mohamed5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3653-3670, 2023, DOI:10.32604/cmc.2023.041627

    Abstract Software Product Line (SPL) is a group of software-intensive systems that share common and variable resources for developing a particular system. The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints (CTC). CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things (IoT) devices because different Internet devices and protocols are communicated. Therefore, managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex, time-consuming, and hard. However, the CTC… More >

  • Open Access

    ARTICLE

    A New Partial Task Offloading Method in a Cooperation Mode under Multi-Constraints for Multi-UE

    Shengyao Sun1,2, Ying Du3, Jiajun Chen4, Xuan Zhang5, Jiwei Zhang6,*, Yiyi Xu7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2879-2900, 2023, DOI:10.32604/cmc.2023.037483

    Abstract In Multi-access Edge Computing (MEC), to deal with multiple user equipment (UE)’s task offloading problem of parallel relationships under the multi-constraints, this paper proposes a cooperation partial task offloading method (named CPMM), aiming to reduce UE's energy and computation consumption, while meeting the task completion delay as much as possible. CPMM first studies the task offloading of single-UE and then considers the task offloading of multi-UE based on single-UE task offloading. CPMM uses the critical path algorithm to divide the modules into key and non-key modules. According to some constraints of UE-self when offloading tasks, it gives priority to non-key… More >

  • Open Access

    ARTICLE

    Study on Flow Field Simulation at Transmission Towers in Loess Hilly Regions Based on Circular Boundary Constraints

    Yongxin Liu1, Huaiwei Cao2, Puyu Zhao2, Gang Yang1, Hua Yu1, Fuwei He3, Bo He2,*

    Energy Engineering, Vol.120, No.10, pp. 2417-2431, 2023, DOI:10.32604/ee.2023.029596

    Abstract When using high-voltage transmission lines for energy transmission in loess hilly regions, local extreme wind fields such as turbulence and high-speed cyclones occur from time to time, which can cause many kinds of mechanical and electrical failures, seriously affecting the reliable and stable energy transmission of the power grid. The existing research focuses on the wind field simulation of ideal micro-terrain and actual terrain with mostly single micro-terrain characteristics. Model boundary constraints and the influence of constrained boundaries are the main problems that need to be solved to accurately model and simulate complex flow fields. In this paper, a flow… More >

  • Open Access

    PROCEEDINGS

    Direct FE2 Method For Concurrent Multilevel Modeling of Piezoelectric Structures

    Leilei Chen2,3, Haozhi Li3,4, Lu Meng5, Pan Chen3, Pei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010584

    Abstract In this paper, a Direct FE2 method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE2 method. The two-level simulation in the Direct FE2 method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE2 are validated using four numerical examples,… More >

  • Open Access

    PROCEEDINGS

    A Novel Topology Optimization Method for Local Relative Displacement Difference Minimization

    Jinyu Gu1, Jinping Qu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09161

    Abstract In the topology optimization problem of mechanical structures, the optimization objectives are mainly focused on the compliance minimization, displacement minimization, stress minimization, and so on. However, in practical engineering, these kinds of optimization objectives do not meet all the requirements. Some structures, such as wind turbine blades and engine blades of aircrafts, are required to maintain a superior aerodynamic shape under external loads. This puts a higher requirement on the local deformation homogenization of the structure. Therefore, we proposed a topology optimization method for the minimization of local relative displacement differences considering stress constraints. First, we present a specific topology… More >

  • Open Access

    PROCEEDINGS

    Development of a Graded Lattice Structure Design and Optimization Method with Complex Boundary Surface Constraints

    Zhujiang Wang1,*, Yizhou Wang1, Bin Zhai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09242

    Abstract Graded lattice structures (GLS) are used widely in the areas of 3D printed sensors, personalized wearable devices, robotics, energy absorption, etc., and have a prospective future in the field of personalized medical devices. The large-scale applications of GLS-based personalized medical devices require a GLS design method that could handle the challenges caused by diverse boundary surface constraints and various requirements of graded mechanical properties [1,2], due to patient-specific care needs. In this work, the proposed automatic seed generation algorithm-based GLS design approach is a prospective solution to promote the wide application of GLS-based personalized medical devices [3,4]. The core idea… More >

  • Open Access

    ARTICLE

    A HYBRID CELLULAR AUTOMATON METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION WITH MECHANICAL AND HEAT CONSTRAINTS

    Xiaolei Denga,b,c,*,† , Jin Wangd , Jinyu Zhoua, Hongcheng Shena, Zefeng Shenga, Jianglin Zhanga, Xiaowen La, Changxiong Xiea

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.13

    Abstract A hybrid cellular automaton model combined with finite element method for structural topology optimization with mechanical and heat constraints is developed. The effect of thermal stress on structural optimization is taken into account. Higher order 8-node element and von Neumann strategy are employed for the finite element and the cellular element, respectively. The validating studies of standard testing structure for topological optimization are carried out. The structure evolution, stress evolution and thermal evolution of topology optimization with mechanical and heat constraints are investigated. The results show the developed hybrid method is more efficient for structural topology optimization. Meanwhile, the topology… More >

Displaying 1-10 on page 1 of 40. Per Page