Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (328)
  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF A DOUBLE SKIN WITH SECONDARY VENTILATION FLOW ON ADIABATIC WALL

    M. Bouraouia, M. S. Rouabaha, A. Abidi-Saadb,c,d,*, A. Korichie, C. Popab , G. Polidorib

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.18

    Abstract Study concerning a double skin flow with secondary ventilation was conducted numerically, in order to understand the basic mechanisms of the free convection in an open channel asymmetrically heated with uniform heat flux density (510 W/m2 ). The vertical channel corresponds to a double skin façade, which was immersed in a tank filled with water. The tank corresponds to the environment which allows us to overcome pressure conditions at the inlet and the outlet of the channel. The use of water allows neglecting radiation effect. The mass conservation equations of momentum and energy are solved using the finite volume method… More >

  • Open Access

    ARTICLE

    MODELING OF FREE CONVECTION HEAT TRANSFER UTILIZING NANOFLUID INSIDE A WAVY ENCLOSURE WITH A PAIR OF HOT AND COLD CYLINDERS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.14

    Abstract In the present work, natural convection heat transfer of Cu-water nanofluid inside a wavy wall enclosure is investigated numerically by using the finite volume discretization method. The study examines the effect of the nanoparticle volume fraction, the Rayleigh number, the wave amplitude, and the undulations number on the heat transfer rate. The results show that the heat transfer rate inside the wavy enclosure enhances by decreasing the wavy surface amplitude and increasing undulations number. It is also found that by increasing the volume fraction of nanoparticles and Rayleigh number, the heat transfer rate increases. More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER OF MHD DISSIPATIVE CARREAU NANOFLUID FLOW OVER A STRETCHING SHEET

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.13

    Abstract Nowadays external magnetic fields are capable of setting the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic nanofluids and makes it aeolotropic. With this incentive, we investigate the flow and heat transfer of electrically conducting liquid film flow of Carreau nanofluid over a stretching sheet by considering the aligned magnetic field in the presence of space and temperature dependent heat source/sink and viscous dissipation. For this study, we considered kerosene as the base fluid embedded with the silver (Ag) and copper… More >

  • Open Access

    ARTICLE

    G-JITTER EFFECTS ON THE MIXED CONVECTION FLOW OF NANOFLUID PAST AN INCLINED STRETCHING SHEET

    Noraihan Afiqah Rawia , Abdul Rahman Mohd Kasimb , Zaiton Mat Isaa , Aurangzaib Mangic , Sharidan Shafiea,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.12

    Abstract Mixed convection flows of nanofluid past an inclined stretching sheet with g-jitter effect is studied in this paper. Water based nanofluid containing copper, copper oxide, aluminium oxide and silver nanoparticles are concerned. Coupled nonlinear partial differential equations are solved using Kellerbox method. The effect of solid nanoparticles volume fraction parameter, frequency of oscillation and inclination angle parameter is observed to reduce the skin friction and heat transfer coefficients whereas mixed convection parameter increases both skin friction and heat transfer coefficients. Present study also shows that, the heat transfer coefficient is highest for silver nanofluid. More >

  • Open Access

    ARTICLE

    MIXED CONVECTION FLOW OF NANOFLUID IN A VERTICAL CHANNEL WITH HALL AND ION-SLIP EFFECTS

    D. Srinivasacharya* , Md. Shafeeurrahaman

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.11

    Abstract In this article the laminar mixed convective incompressible electrically conducting flow of a nanofluid in vertical channel has been investigated by considering Hall and Ion-slip parameter effects. The nonlinear governing equations are non-dimensionalized and then solving by using HAM procedure. The impact of the magnetic, Hall and Ion-slip parameter on dimensionless velocity, temperature and nanoparticle concentration are investigated and represented geo-metrically. More >

  • Open Access

    ARTICLE

    AN EXACT SOLUTION ON UNSTEADY MHD VISCOELASTIC FLUID FLOW PAST AN INFINITE VERTICAL PLATE IN THE PRESENCE OF THERMAL RADIATION

    E. Kumaresan, A .G. Vijaya Kumar*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.9

    Abstract A study has been carried out to analyse an unsteady free convective chemically reacting, MHD Visco-elastic fluid (Walter’s liquid-B model) flow past an infinite vertical plate in the presence of thermal radiation with uniform temperature and species diffusion. The dimensionless governing partial differential equations are solved by using Laplace transform technique. The effects of different physical parameters like visco-elastic parameter, chemical reaction parameter, Magnetic field parameter, thermal Grashof number, mass Grashof number and time are discussed by plotting the velocity profiles for both cooling  (Gr >0, Gm > 0) and heating of the plate (Gr < 0, Gm <… More >

  • Open Access

    ARTICLE

    FINITE ELEMENT STUDY OF DDNC IN BOTTOM HEATED ENCLOSURES WITH MASS DIFFUSIVE SIDE WALLS

    Nithish Reddy* , K. Murugesan

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.7

    Abstract In this paper DDNC phenomenon in a bottom heated enclosure exposed to mass diffusion from its side walls is investigated numerically. The interplay between thermal and solutal buoyancy forces on fluid circulation and heat transfer rates is studied in three different enclosures of aspect ratios 0.5, 1.0 and 2.0. Finite element base numerical code has used to solve the governing equations, here velocity and vorticity are taken as primary variables for flow field. Numerical results are well validated with that of the literature. The relative strength of solutal to thermal buoyancy forces is defined by buoyancy ratio parameter ‘N’, numerical… More >

  • Open Access

    ARTICLE

    JOULE HEATING AND THERMAL DIFFUSION EFFECTS ON MHD RADIATIVE AND CONVECTIVE CASSON FLUID FLOW PAST AN OSCILLATING SEMI-INFINITE VERTICAL POROUS PLATE

    C. Veeresha , S. V. K. Varmaa , A .G. Vijaya Kumarb,*, M. Umamaheswarc, M. C. Rajuc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.1

    Abstract An analysis is performed to investigate the effects of Joule heating and thermal diffusion on unsteady, viscous, incompressible, electrically conducting MHD heat and mass transfer free convection Casson fluid flow past an oscillating semi-infinite vertical moving porous plate in the presence of heat source/sink and an applied transverse magnetic field. Initially it is assumed that the plate and surrounding fluid at the same temperature and concentration at all the points in stationary condition in the entire flow region. Thereafter a constant temperature is given to the plate hence the buoyancy effect is supporting the fluid to move in upward direction… More >

  • Open Access

    ARTICLE

    SCALING GROUP TRANSFORMATION FOR MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH EFFECTS OF SORET, RADIATION AND VARIABLE PROPERTIES

    J. Pranithaa,* , G. Venkata Sumana , D. Srinivasacharyaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.39

    Abstract An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation parameters. Heat and mass transfer… More >

  • Open Access

    ARTICLE

    NONLINEAR CONVECTIVE TRANSPORT ALONG AN INCLINED PLATE IN NON-DARCY POROUS MEDIUM SATURATED BY A MICROPOLAR FLUID WITH CONVECTIVE BOUNDARY CONDITION

    Ch. RamReddy , P. Naveen, D. Srinivasacharya

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.35

    Abstract The role of nonlinear variation of density with temperature (NDT) and concentration (NDC) on the free convective flow of non-Darcy micropolar fluid over an inclined plate has been studied for the first time. In addition, the modified form of thermal slip and isothermal condition is utilized to address heat transfer phenomena in nuclear plants, textile drying, and heat exchangers, etc. The respective partial differential equations and boundary conditions are cast into a sequence of the ordinary differential equation by the local non-similarity technique. The remodeled equations are simplified numerically by applying a successive linearization method (SLM). A constructive investigation emphasizing… More >

Displaying 61-70 on page 7 of 328. Per Page