Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (366)
  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255 - 29 January 2024

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and More >

  • Open Access

    ARTICLE

    Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder

    Aaqib Majeed1,*, Ahmad Zeeshan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 525-536, 2024, DOI:10.32604/fdmp.2023.028716 - 12 January 2024

    Abstract The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined. The classical Navier-Stokes equations are considered in a porous frame. In addition, the Lorentz force is taken into account. The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation. The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB. The evolution of the boundary layer and the growing velocity is shown graphically together with the related More >

  • Open Access

    ARTICLE

    An Investigation into Forced Convection of a Nanofluid Flowing in a Rectangular Microchannel under the Influence of a Magnetic Field

    Muataz S. Alhassan1, Ameer A. Alameri2, Andrés Alexis Ramírez-Coronel3, I. B. Sapaev4,5,6, Azher M. Abed7,*, David-Juan Ramos-Huallpartupa8, Rahman S. Zabibah9

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 311-323, 2024, DOI:10.32604/fdmp.2023.026782 - 14 December 2023

    Abstract In line with recent studies, where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids, experiments have been conducted using water with cobalt ferrite/graphene nanoparticles. In particular, a circular channel made of copper subjected to a constant heat flux has been considered. As nanoparticles are sensitive to the presence of a magnetic field, different conditions have been examined, allowing both the strength and the frequency of such a field to span relatively wide ranges and assuming different concentrations of nanoparticles. According More >

  • Open Access

    ARTICLE

    Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field

    Yasir Khan1, Safia Akram2,*, Maria Athar3, Khalid Saeed4, Alia Razia2, A. Alameer1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1501-1520, 2024, DOI:10.32604/cmes.2023.029878 - 17 November 2023

    Abstract The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applications in medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In this paper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of a Prandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation and an induced magnetic field. The equations for the current flow scenario are developed, incorporating relevant assumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and double… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300 - 30 November 2023

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with… More >

  • Open Access

    ARTICLE

    Amplitude and Period Effect on Heat Transfer in an Enclosure with Sinusoidal Heating from Below Using Lattice Boltzmann Method

    Noureddine Abouricha1,*, Chouaib Ennawaoui1,2, Mustapha El Alami3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 523-537, 2023, DOI:10.32604/fhmt.2023.045914 - 30 November 2023

    Abstract This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method (LBM). We consider a square enclosure of side H filled with air (Pr = 0.71) and heated from below, with a hot portion of length L = 0.8 H, by imposing a sinusoidal temperature. The unheated segments of the bottom wall are treated as adiabatic, and one of the vertical walls features a cold region, while the remaining walls remain adiabatic. The outcomes of the two-dimensional (2D) problem are depicted through isotherms, streamlines, More >

  • Open Access

    PROCEEDINGS

    Direct Numerical Simulation of Electroconvection near an Ion-Selective Membrane Under Magnetic Field

    Jinxiang Cai1, Gaojin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09833

    Abstract We study the effect of magnetic field on the electro-hydrodynamics of ion transport in a liquid electrolyte near an ion-selective membrane using direct numerical simulation. Ion transport across the ion selective membrane plays an essential role in many electro-hydrodynamic and electro-microfluidic systems. Above a critical voltage, electroconvective instability occurs near the membrane surface, causing vortical flows in liquid electrolyte which enhances the mixing of cations and anions, increases the ion transport efficiency and causes current fluctuations. When the system is under a magnetic field, the Lorentz force generated by the ion movement can significantly change… More >

  • Open Access

    ARTICLE

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

    Tiezhu Sun*, Huan Sun, Tingzheng Tang, Yongcheng Yan, Peixuan Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2519-2531, 2023, DOI:10.32604/fdmp.2023.027118 - 25 June 2023

    Abstract The so-called indirect evaporative cooling technology is widely used in air conditioning applications. The thermal characterization of tube-type indirect evaporative coolers, however, still presents challenges which need to be addressed to make this technology more reliable and easy to implement. This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter. In particular, the required tests were carried out considering a range of dry-bulb temperatures between 16°C and 18°C and a temperature difference between the wet-bulb and dry-bulb temperature of 2°C∼4°C. The integrated convective More > Graphic Abstract

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER CREATED FROM HEATED CYLINDER IMMERSED INSIDE DUCT COOLED FROM SIDE

    Qais Abid Yousifa , Omar Rafae Alomara,*, Obed M. Alib , Omar Mohammed Alic

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-14, 2023, DOI:10.5098/hmt.20.20

    Abstract This work involves a numerical investigation on free convection heat transfer occurred by a hot cylinder immersed in a square duct cooled from one side under different temperatures. Simulations have been done for a large ranges of Rayleigh number (103Ra ≤107 ) and right wall temperature (0≤Tr ≤0.75). The results displayed that Nu is enhanced with rising in Ra and decreasing in Tr. The value of Nu is decreased with rising in Tr, where the maximum reduction in Nu is about 32% for Tr=0.75 as compared to Tr=0. The maximum enhancement range for Nu is found between 50% and 100% More >

  • Open Access

    ARTICLE

    FINITE ELEMENT ANALYSYS OF RADIATIVE UNSTEADY MHD VISCOUS DISSIPATIVE MIXED CONVECTION FLUID FLOW PAST AN IMPULSIVELY STARTED OSCILLATING PLATE IN THE PRESENCE OF HEAT SOURCE

    D. Santhi Kumaria,* , Venkata Subrahmanyam Sajjaa , P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-11, 2023, DOI:10.5098/hmt.20.5

    Abstract The aim of present study is an influence of viscous dissipation and heat source on an unsteady MHD mixed convective, fluid flow past an impulsively started oscillating plate embedded in a porous medium in presence of magnetic field, heat and mass transfer. The modeling equations are converted to dimensionless equations then solved through Galerkin finite element method and discussed in the flow distributions with the help of MATLAB. Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically More >

Displaying 41-50 on page 5 of 366. Per Page