Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    ANALYTICAL INVESTIGATIONS OF DIFFUSION THERMO EFFECTS ON UNSTEADY FREE CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

    E. Kumaresana , A .G. Vijaya Kumara,*, J. Prakashb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.2

    Abstract The objective of this study is to investigate diffusion-thermo and radiation effects on unsteady free convection chemically reacting fluid flow past an accelerated infinite plate with variable temperature and mass diffusion under the influence of uniform transverse magnetic field when the magnetic lines of force are fixed relative to the fluid or to the plate. . Two important cases, when the magnetic lines of force are being fixed relative to the fluid (K=0) or to the moving plate (K=1) have been considered. A general exact solution of the dimensionless governing partial differential equations is obtained by Laplace transform technique without… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ANALYSIS ON MHD MIXED CONVECTION FLOW OF RADIATIVE CHEMICALLY HEAT GENERATING FLUID WITH VISCOUS DISSIPATION AND THERMO-DIFFUSION EFFECT

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.30

    Abstract In this paper an analysis on heat and mass transfer is made to study magnetohydrodynamic (MHD) mixed convective flow of an incompressible viscous fluid flowing past an inclined plate. A magnetic field of uniform strength is applied to the plate to influence the flow. Due to weak voltage differences caused by the very low polarization charges, the influence of electric field is considered to be neglected. Again large temperature gradient ensures cross diffusion effect like thermo-diffusion (Soret) in the field. The governed set of non-linear partial differential equations is solved by developing a multi-parameter asymptotic perturbation scheme. The influence of… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection was studied. From this study… More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION FLOW OF HERSCHELBULKLEY FLUID IN CIRCULAR DUCT WITH AXIALLY VARIABLE WALL HEAT FLUX

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-11, 2020, DOI:10.5098/hmt.15.5

    Abstract The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and logarithmic functions are considered as examples. It… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION OF THE EFFECTS OF HEAT AND MASS TRANSFER ON UNSTEADY MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE

    D. Santhi Kumaria,*, Venkata Subrahmanyam Sajjaa, P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.24

    Abstract This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then numerically analyzed employing MATLAB. A significant change in velocity, temperature, concentration profiles is… More >

  • Open Access

    ARTICLE

    Impact of Artificial Compressibility on the Numerical Solution of Incompressible Nanofluid Flow

    Tohid Adibi1, Shams Forruque Ahmed2,*, Seyed Esmail Razavi3, Omid Adibi4, Irfan Anjum Badruddin5, Syed Javed5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008

    Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Hydromagnetic Mixed Convection Flow of Nanofluids inside a Triangular Cavity on the Basis of a Two-Component Nonhomogeneous Mathematical Model

    Khadija A. Al-Hassani1, M. S. Alam2, M. M. Rahman1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 1-20, 2021, DOI:10.32604/fdmp.2021.013497

    Abstract Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties. Numerical simulations are presented about the unsteady behavior of mixed convection of Fe3O4-water, Fe3O4- kerosene, Fe3O4-ethylene glycol, and Fe3O4-engine oil nanofluids inside a lid-driven triangular cavity. In particular, a two-component non-homogeneous nanofluid model is used. The bottom wall of the enclosure is insulated, whereas the inclined wall is kept a constant (cold) temperature and various temperature laws are assumed for the vertical wall, namely: θ = 1(Case 1), θ = Y(1 – Y)(Case 2), and θ = sin(2πY)(Case 3). A tilted magnetic field of uniform… More >

  • Open Access

    ARTICLE

    Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption

    Muhammad Ashraf1, Amir Abbas1, Saqib Zia2, Yu-Ming Chu3, 4, Ilyas Khan5, *, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1809-1823, 2020, DOI:10.32604/cmc.2020.011404

    Abstract The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model. The formulation of the flow model is based on basic universal equations of conservation of momentum, energy and mass. The prescribed flow model is converted to non-dimensional form by using suitable scaling. The obtained transformed equations are solved numerically by using finite difference scheme. For the analysis of above said behavior the computed numerical data for fluid velocity, temperature profile, and mass concentration for several constraints that… More >

  • Open Access

    ARTICLE

    Natural Convection Flow and Heat Transfer in Square Enclosure Asymetrically Heated from Below: A Lattice Boltzmann Comprehensive Study

    Taoufik Naffouti1,2 and Ridha Djebali1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 211-228, 2012, DOI:10.3970/cmes.2012.088.211

    Abstract This paper reports numerical results of natural convection flow evolving inside confined medium defined by two-dimensional square enclosure containing isothermal hot source placed asymmetrically at bottom wall. The sides-walls are isothermally cooled at a constant temperature; however the ceiling and the rest of bottom wall are insulated. The lattice Boltzmann method is used to solve the dimensionless governing equations with the associated boundary conditions. The flow is monitored by the Grashof number and the Prandtl number taken here 0.71. Numerical simulations are performed to study the effects of Grashof number ranging from 104 to 106, hot source length from 0.1… More >

  • Open Access

    ARTICLE

    Homotopy Analysis of Natural Convection Flows with Effects of Thermal and Mass Diffusion

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 447-462, 2012, DOI:10.3970/cmes.2012.085.447

    Abstract Both buoyancy effects of thermal and mass diffusion in the natural convection flow about a vertical plate are considered in this paper. The non-linear coupled differential governing equations for velocity, temperature and concentration fields are solved by using the homotopy analysis method. Without the need of iteration, the obtained solution is in the form of an infinite power series which indicates those series have high accuracy when comparing it with other-generated by the traditional method. The impact of the Prandtl number, Schmidt number and the buoyancy parameter on the flow are widely discussed in detail. More >

Displaying 21-30 on page 3 of 34. Per Page