Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Local Moving Least Square - One-Dimensional IRBFN Technique: Part I - Natural Convection Flows in Concentric and Eccentric Annuli

    D. Ngo-Cong1,2, N. Mai-Duy1, W. Karunasena2, T. Tran-Cong1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 275-310, 2012, DOI:10.3970/cmes.2012.083.275

    Abstract In this paper, natural convection flows in concentric and eccentric annuli are studied using a new numerical method, namely local moving least square - one dimensional integrated radial basis function networks (LMLS-1D-IRBFN). The partition of unity method is used to incorporate the moving least square (MLS) and one dimensional-integrated radial basis function (1D-IRBFN) techniques in an approach that leads to sparse system matrices and offers a high level of accuracy as in the case of 1D-IRBFN method. The present method possesses a Kronecker-Delta function property which helps impose the essential boundary condition in an exact More >

  • Open Access

    ARTICLE

    BIFURCATIONS OF NATURAL CONVECTION FLOWS FROM AN ENCLOSED CYLINDRICAL HEAT SOURCE

    Diego Angelia,*, Arturo Paganob, Mauro A. Corticellia, Alberto Ficherab, Giovanni S. Barozzia

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-9, 2011, DOI:10.5098/hmt.v2.2.3003

    Abstract A numerical analysis of transitional natural convection from a confined thermal source is presented. The system considered is an air-filled, square-sectioned 2D enclosure containing a horizontal heated cylinder. The resulting flow is investigated with respect to the variation of the Rayleigh number, for three values of the aspect ratio A. The first bifurcation of the low-Ra fixed-point solution is tracked for each A-value. Chaotic flow features are detailed for the case A = 2.5. The supercritical behaviour of the system is investigated using nonlinear analysis tools and phase-space representations, and the effect of the flow More >

  • Open Access

    ARTICLE

    2D Mixed Convection Viscous Incompressible Flows with Velocity-Vorticity Variables

    Alfredo Nicolás1, Blanca Bermúdez2

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 163-178, 2011, DOI:10.32604/cmes.2011.082.163

    Abstract Mixed convection viscous incompressible fluid flows, under a gravitational system, in rectangular cavities are reported using the unsteady Boussinessq approximation in velocity-vorticity variables. The results are obtained using a numerical method based on a fixed point iterative process to solve the nonlinear elliptic system that results after time discretization; the iterative process leads to the solution of uncoupled, well-conditioned, symmetric linear elliptic problems for which efficient solvers exist regardless of the space discretization. Results with different aspect ratios A up to Grashof numbers Gr = 100000 and Reynolds numbers Re = 1000 for the lid driven More >

  • Open Access

    ARTICLE

    Improving the Efficiency of Wind Power System by Using Natural Convection Flows

    M. Kriaa1, M. El Alami1,2, M. Najam1, E. Semma3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 125-140, 2011, DOI:10.3970/fdmp.2011.007.125

    Abstract In this paper a numerical study of natural convection in a two dimensional convergent channel, with or without rectangular block, is carried out. The block is placed at the channel outlet and its thermal conductivity is set equal to that of air. One of channel planes is heated at constant temperature TH. The other one is maintained cold at TC < TH. The governing equations are solved using a finite volume method and the SIMLEC algorithm for the velocity-pressure coupling is used. Special emphasis is given to detail the effect of the block size and Rayleigh number… More >

  • Open Access

    ARTICLE

    Effects of the Rayleigh Number and the Aspect Ratio on 2D Natural Convection Flows

    Alfredo Nicolás1, Blanca Bermúdez2, Elsa Báez3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 83-106, 2009, DOI:10.3970/cmes.2009.048.083

    Abstract Numerical results of natural convection flows in two-dimensional cavities, filled with air, are presented to study the effects on the characteristics of the flows as some parameters vary: the Rayleigh number Ra and the aspect ratio A of the cavity. This kind of thermal flows may be modeled by the unsteady Boussinesq approximation in stream function-vorticity variables. The results are obtained with a simple numerical scheme, previously reported for isothermal/mixed convection flows, based mainly on a fixed point iterative process applied to the non-linear elliptic system that results after time discretization. The evolution of the flows,… More >

Displaying 31-40 on page 4 of 35. Per Page