Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    An Interval Optimization Method Considering the Dependence between Uncertain Parameters

    C. Jiang1,2, Q.F. Zhang1, X. Han1, D. Li3, J. Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.1, pp. 65-82, 2011, DOI:10.3970/cmes.2011.074.065

    Abstract In this paper, an interval optimization method is developed to deal with a class of problems that there exists dependence between the interval parameters. An ellipsoidal convex model is used to model the uncertainty domain, in which the parameter dependence can be well reflected through the shape of a multi-dimensional ellipsoid. Based on an order relation and a reliability-based possibility degree of interval, the uncertain optimization can be transformed to a deterministic nesting optimization. An efficient algorithm is then constructed to solve the created nesting optimization, in which a sequence of approximate interval optimizations are created and the optimal design… More >

  • Open Access

    ARTICLE

    On the solution method for problems related to the micro-mechanics of a periodically curved fiber near a convex cylindrical surface

    Surkay D. Akbarov1,2,3, A. R. Mamedov3

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 257-296, 2009, DOI:10.3970/cmes.2009.042.257

    Abstract Within the scope of the piecewise homogeneous body model through the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity, an approach for the investigation of problems with the micromechanics of a periodically curved fiber near the free convex cylindrical surface is proposed and employed. The main difficulties in finding the solution to these problems are caused by the impossibility of employing the summation theorem for cylindrical functions to satisfy the boundary conditions on the cylindrical surface. For this purpose the cosine and sine Fourier series presentation of the sought values is proposed to satisfy the… More >

  • Open Access

    ARTICLE

    Extended Limit Analysis of Strain Softening Frames Involving 2nd-Order Geometric Nonlinearity and Limited Ductility

    S. Tangaramvong1, F. Tin-Loi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 217-256, 2009, DOI:10.3970/cmes.2009.042.217

    Abstract Classical limit analysis is extended to include the effects of 2nd-order geometric and material nonlinearities, as well as the inclusion of limited ductility constraints. For the class of frame structures considered, the material constitutive model adopted can simultaneously accommodate the effects of combined axial and flexural force as well as local softening instability through the use of piecewise linearized yield surfaces. The main feature of the approach developed is to compute, in a single step, an upper bound to the maximum load. Corresponding displacements and stresses can be obtained as a by-product of the analysis. The problem is formulated as… More >

  • Open Access

    ARTICLE

    Lie Group Symmetry Applied to the Computation of Convex Plasticity Constitutive Equation

    C.-S. Liu1,2, C.-W. Chang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 277-294, 2004, DOI:10.3970/cmes.2004.006.277

    Abstract This paper delivers several new types of representations of the convex plasticity equation and realizes them by numerical discretizations. In terms of the Gaussian unit vector and the Weingarten map techniques in differential geometry, we prove that the plastic equation exhibits a Lie group symmetry. We convert the nonlinear constitutive equations to a quasilinear equations system X = AX, X ∈ Mn+1, A ∈ so(n,1) in local. In this way the inherent symmetry of the constitutive model of convex plasticity is brought out. The underlying structure is found to be a cone in the Minkowski space Mn+1 on which the… More >

  • Open Access

    ARTICLE

    Approximation of the grad div Operator in Nonconvex Domains

    D. Boffi1, C. Chinosi2, L. Gastaldi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 31-44, 2000, DOI:10.3970/cmes.2000.001.191

    Abstract In this paper we are dealing with the approximation of the grad-div operator in nonconvex polygonal domains. A penalization strategy is considered in order to obtain a formulation of the original eigenproblem which is associated with an elliptic operator. However the presence of singular eigensolutions, in the case of nonconvex domains, is the origin of major troubles in the numerical approximation of the problem. A mixed-type approximation, based on a projection procedure, is introduced and analyzed from the theoretical and numerical point of view. Several numerical experiments confirm that in presence of singularities the projection is needed in order to… More >

  • Open Access

    ARTICLE

    Yield Stress Prediction Model of RAFM Steel Based on the Improved GDM-SA-SVR Algorithm

    Sifan Long1, Ming Zhao2,*, Xinfu He3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 727-760, 2019, DOI:10.32604/cmc.2019.04454

    Abstract With the development of society and the exhaustion of fossil energy, researcher need to identify new alternative energy sources. Nuclear energy is a very good choice, but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors. Therefore, we studied the radiation performance of the fusion material reduced activation ferritic/martensitic (RAFM) steel. The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method (GDM) which combines the gradient descent search strategy of the… More >

  • Open Access

    ARTICLE

    Excluded Volumes of Anisotropic Convex Particles in Heterogeneous Media: Theoretical and Numerical Studies

    Wenxiang Xu1,2,3,4, Ganquan Yang5, Peng Lan2, Huaifa Ma1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 25-40, 2016, DOI:10.3970/cmc.2016.052.025

    Abstract Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media. In this work, we obtain the excluded volumes of several anisotropic convex particles including prolate spheroids, oblate spheroids, spherocylinders, and Platonic particles, using theoretical and numerical approaches. According to the second virial coefficient, we first present a theoretical scheme for determining the excluded volumes of anisotropic particles. Also, the mean tangent diameters of anisotropic convex particles are formulated by the quantitative stereology. Subsequently, Monte Carlo simulations are demonstrated to numerically evaluate… More >

Displaying 21-30 on page 3 of 27. Per Page