Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (500)
  • Open Access

    ARTICLE

    Median Filtering Forensics Scheme for Color Images Based on Quaternion Magnitude-Phase CNN

    Jinwei Wang1, *, Yang Zhang1

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 99-112, 2020, DOI:10.32604/cmc.2020.04373

    Abstract In the paper, a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images. Compared with conventional convolutional neural network, color images can be processed in a holistic manner in the proposed scheme, which makes full use of the correlation between RGB channels. And due to the use of convolutional neural network, it can effectively avoid the one-sidedness of artificial features. Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection. More >

  • Open Access

    ARTICLE

    Digital Forensics for Recoloring via Convolutional Neural Network

    Zhangyi Shen1, Feng Ding2, *, Yunqing Shi1

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 1-16, 2020, DOI:10.32604/cmc.2020.08291

    Abstract As a common medium in our daily life, images are important for most people to gather information. There are also people who edit or even tamper images to deliberately deliver false information under different purposes. Thus, in digital forensics, it is necessary to understand the manipulating history of images. That requires to verify all possible manipulations applied to images. Among all the image editing manipulations, recoloring is widely used to adjust or repaint the colors in images. The color information is an important visual information that image can deliver. Thus, it is necessary to guarantee the correctness of color in… More >

  • Open Access

    ARTICLE

    IDSH: An Improved Deep Supervised Hashing Method for Image Retrieval

    Chaowen Lu1,a, Feifei Lee1,a,*, Lei Chen1, Sheng Huang1, Qiu Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 593-608, 2019, DOI:10.32604/cmes.2019.07796

    Abstract Image retrieval has become more and more important because of the explosive growth of images on the Internet. Traditional image retrieval methods have limited image retrieval performance due to the poor image expression abhility of visual feature and high dimension of feature. Hashing is a widely-used method for Approximate Nearest Neighbor (ANN) search due to its rapidity and timeliness. Meanwhile, Convolutional Neural Networks (CNNs) have strong discriminative characteristics which are used for image classification. In this paper, we propose a CNN architecture based on improved deep supervised hashing (IDSH) method, by which the binary compact codes can be generated directly.… More >

  • Open Access

    ARTICLE

    Digital Vision Based Concrete Compressive Strength Evaluating Model Using Deep Convolutional Neural Network

    Hyun Kyu Shin1, Yong Han Ahn2, Sang Hyo Lee3, Ha Young Kim4,*

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 911-928, 2019, DOI:10.32604/cmc.2019.08269

    Abstract Compressive strength of concrete is a significant factor to assess building structure health and safety. Therefore, various methods have been developed to evaluate the compressive strength of concrete structures. However, previous methods have several challenges in costly, time-consuming, and unsafety. To address these drawbacks, this paper proposed a digital vision based concrete compressive strength evaluating model using deep convolutional neural network (DCNN). The proposed model presented an alternative approach to evaluating the concrete strength and contributed to improving efficiency and accuracy. The model was developed with 4,000 digital images and 61,996 images extracted from video recordings collected from concrete samples.… More >

  • Open Access

    ABSTRACT

    Characterization of Coronary Atherosclerotic Plaque Composition Based on Convolutional Neural Network (CNN)

    Yifan Yin1, Chunliu He1, Biao Xu2, Zhiyong Li1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 57-57, 2019, DOI:10.32604/mcb.2019.05732

    Abstract The tissue composition and morphological structure of atherosclerotic plaques determine its stability or vulnerability. Intravascular optical coherence tomography (IVOCT) has rapidly become the method of choice for assessing the pathology of the coronary arterial wall in vivo due to its superior resolution. However, in clinical practice, the analysis of plaque composition of OCT images mainly relies on the interpretation of images by well-trained experts, which is a time-consuming, labor-intensive procedure and it is also subjective. The purpose of this study is to use the Convolutional neural network (CNN) method to automatically extract the best feature information from the OCT images… More >

  • Open Access

    ARTICLE

    A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation

    Chaoyang Xia1, Jing Peng1, Zongqing Ma2, Xiaojie Li1,*

    Journal of Information Hiding and Privacy Protection, Vol.1, No.3, pp. 109-117, 2019, DOI:10.32604/jihpp.2019.07198

    Abstract Cardiomyopathy is one of the most serious public health threats. The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning. Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle (LV) manually in routine clinical diagnosis or treatment planning period. This task is time-consuming and error-prone. Therefore, it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance (CMR) imaging datasets. However, due to the low image quality and the deformation caused by heartbeat, there is no effective tool for fully automated end-to-end… More >

  • Open Access

    ARTICLE

    CNN-Based Fast HEVC Quantization Parameter Mode Decision

    Liming Chen1, Bosi Wang1,*, Weijie Yu1, Xu Fan1

    Journal of New Media, Vol.1, No.3, pp. 115-126, 2019, DOI:10.32604/jnm.2019.08581

    Abstract With the development of multimedia presentation technology, image acquisition technology and the Internet industry, long-distance communication methods have changed from the previous letter, the audio to the current audio/video. And the proportion of video in work, study and entertainment keeps increasing, high-definition video is getting more and more attention. Due to the limits of the network environment and storage capacity, the original video must be encoded to be efficiently transmitted and stored. High Efficient Video Coding (HEVC) requires a large amount of time to recursively traverse all possible quantization parameter values of the coding unit in the adaptive quantization process.… More >

  • Open Access

    ARTICLE

    A Review on Deep Learning Approaches to Image Classification and Object Segmentation

    Hao Wu1, Qi Liu2, 3, *, Xiaodong Liu4

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 575-597, 2019, DOI:10.32604/cmc.2019.03595

    Abstract Deep learning technology has brought great impetus to artificial intelligence, especially in the fields of image processing, pattern and object recognition in recent years. Present proposed artificial neural networks and optimization skills have effectively achieved large-scale deep learnt neural networks showing better performance with deeper depth and wider width of networks. With the efforts in the present deep learning approaches, factors, e.g., network structures, training methods and training data sets are playing critical roles in improving the performance of networks. In this paper, deep learning models in recent years are summarized and compared with detailed discussion of several typical networks… More >

  • Open Access

    ARTICLE

    Binaural Sound Source Localization Based on Convolutional Neural Network

    Lin Zhou1,*, Kangyu Ma1, Lijie Wang1, Ying Chen1,2, Yibin Tang3

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 545-557, 2019, DOI:10.32604/cmc.2019.05969

    Abstract Binaural sound source localization (BSSL) in low signal-to-noise ratio (SNR) and high reverberation environment is still a challenging task. In this paper, a novel BSSL algorithm is proposed by introducing convolutional neural network (CNN). The proposed algorithm first extracts the spatial feature of each sub-band from binaural sound signal, and then combines the features of all sub-bands within one frame to assemble a two-dimensional feature matrix as a grey image. To fully exploit the advantage of the CNN in extracting high-level features from the grey image, the spatial feature matrix of each frame is used as input to train the… More >

  • Open Access

    RETRACTION

    RETRACTED: Automatic Arrhythmia Detection Based on Convolutional Neural Networks

    Zhong Liu1,2, Xinan Wang1,*, Kuntao Lu1, David Su3

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 497-509, 2019, DOI:10.32604/cmc.2019.04882

    Abstract ECG signal is of great importance in the clinical diagnosis of various heart diseases. The abnormal origin or conduction of excitation is the electrophysiological mechanism leading to arrhythmia, but the type and frequency of arrhythmia is an important indicator reflecting the stability of cardiac electrical activity. In clinical practice, arrhythmic signals can be classified according to the origin of excitation, the frequency of excitation, or the transmission of excitation. Traditional heart disease diagnosis depends on doctors, and it is influenced by doctors' professional skills and the department's specialty. ECG signal has the characteristics of weak signal, low frequency, large variation,… More >

Displaying 481-490 on page 49 of 500. Per Page