Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (519)
  • Open Access

    ARTICLE

    Deep Learning for Distinguishing Computer Generated Images and Natural Images: A Survey

    Bingtao Hu*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 95-105, 2020, DOI:10.32604/jihpp.2020.010464

    Abstract With the development of computer graphics, realistic computer graphics (CG) have become more and more common in our field of vision. This rendered image is invisible to the naked eye. How to effectively identify CG and natural images (NI) has been become a new issue in the field of digital forensics. In recent years, a series of deep learning network frameworks have shown great advantages in the field of images, which provides a good choice for us to solve this problem. This paper aims to track the latest developments and applications of deep learning in More >

  • Open Access

    ARTICLE

    Image Retrieval Based on Deep Feature Extraction and Reduction with Improved CNN and PCA

    Rongyu Chen, Lili Pan*, Yan Zhou, Qianhui Lei

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 67-76, 2020, DOI:10.32604/jihpp.2020.010472

    Abstract With the rapid development of information technology, the speed and efficiency of image retrieval are increasingly required in many fields, and a compelling image retrieval method is critical for the development of information. Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete, information more complementary and higher precision. However, the high-dimension deep features extracted by CNNs (convolutional neural networks) limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval. To solving this problem, the high-dimension feature reduction technology is… More >

  • Open Access

    ARTICLE

    A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images

    S. Velliangiri1,*, J. Premalatha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 625-645, 2020, DOI:10.32604/cmes.2020.010869

    Abstract Different devices in the recent era generated a vast amount of digital video. Generally, it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice. Many kinds of researches on forensic detection have been presented, and it provides less accuracy. This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network (CNN). In the initial stage, the input video is taken as of the dataset and then converts the videos into image frames. More >

  • Open Access

    ARTICLE

    The Instance-Aware Automatic Image Colorization Based on Deep Convolutional Neural Network

    Hui Li1, Wei Zeng1,*, Guorong Xiao2, Huabin Wang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 841-846, 2020, DOI:10.32604/iasc.2020.010118

    Abstract Recent progress on image colorization is substantial and benefiting mostly from the great development of the deep convolutional neural networks. However, one type of object can be colored by different kinds of colors. Due to the uncertain relationship between the object and color, the deep neural network is unstable and difficult to converge during the training process. In order to solve this problem, this paper proposes an instance-aware automatic image colorization algorithm, which uses the semantic features of the object instance as prior knowledge to guide the deep neural network to do the colorization task. More >

  • Open Access

    ARTICLE

    PDNet: A Convolutional Neural Network Has Potential to be Deployed on Small Intelligent Devices for Arrhythmia Diagnosis

    Fei Yang1,2,#, Xiaoqing Zhang1,*,#, Yong Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 365-382, 2020, DOI:10.32604/cmes.2020.010798

    Abstract Heart arrhythmia is a group of irregular heartbeat conditions and is usually detected by electrocardiograms (ECG) signals. Over the past years, deep learning methods have been developed to classify different types of heart arrhythmias through ECG based on computer-aided diagnosis systems (CADs), but these deep learning methods usually cannot trade-off between classification performance and parameters of deep learning methods. To tackle this problem, this work proposes a convolutional neural network (CNN) model named PDNet to recognize different types of heart arrhythmias efficiently. In the PDNet, a convolutional block named PDblock is devised, which is comprised More >

  • Open Access

    ARTICLE

    A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism

    Jiabin Wang*, Kai Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 345-363, 2020, DOI:10.32604/cmes.2020.011046

    Abstract In many existing multi-view gait recognition methods based on images or video sequences, gait sequences are usually used to superimpose and synthesize images and construct energy-like template. However, information may be lost during the process of compositing image and capture EMG signals. Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection. To better solve the problems, a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed. Firstly, the sliding time window method is used to capture EMG signals. Then, the… More >

  • Open Access

    ARTICLE

    MoTransFrame: Model Transfer Framework for CNNs on Low-Resource Edge Computing Node

    Panyu Liu1, Huilin Ren2, Xiaojun Shi3, Yangyang Li4, *, Zhiping Cai1, Fang Liu5, Huacheng Zeng6

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2321-2334, 2020, DOI:10.32604/cmc.2020.010522

    Abstract Deep learning technology has been widely used in computer vision, speech recognition, natural language processing, and other related fields. The deep learning algorithm has high precision and high reliability. However, the lack of resources in the edge terminal equipment makes it difficult to run deep learning algorithms that require more memory and computing power. In this paper, we propose MoTransFrame, a general model processing framework for deep learning models. Instead of designing a model compression algorithm with a high compression ratio, MoTransFrame can transplant popular convolutional neural networks models to resources-starved edge devices promptly and More >

  • Open Access

    ARTICLE

    Adaptive Binary Coding for Scene Classification Based on Convolutional Networks

    Shuai Wang1, Xianyi Chen2, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2065-2077, 2020, DOI:10.32604/cmc.2020.09857

    Abstract With the rapid development of computer technology, millions of images are produced everyday by different sources. How to efficiently process these images and accurately discern the scene in them becomes an important but tough task. In this paper, we propose a novel supervised learning framework based on proposed adaptive binary coding for scene classification. Specifically, we first extract some high-level features of images under consideration based on available models trained on public datasets. Then, we further design a binary encoding method called one-hot encoding to make the feature representation more efficient. Benefiting from the proposed More >

  • Open Access

    ARTICLE

    Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks

    Omer Berat Sezer*, Ahmet Murat Ozbayoglu

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 323-334, 2020, DOI:10.31209/2018.100000065

    Abstract Even though computational intelligence techniques have been extensively utilized in financial trading systems, almost all developed models use the time series data for price prediction or identifying buy-sell points. However, in this study we decided to use 2-D stock bar chart images directly without introducing any additional time series associated with the underlying stock. We propose a novel algorithmic trading model CNN-BI (Convolutional Neural Network with Bar Images) using a 2-D Convolutional Neural Network. We generated 2-D images of sliding windows of 30-day bar charts for Dow 30 stocks and trained a deep Convolutional Neural More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Architecture for the Classification of Superhero Fashion Products: An Application for Medical-Tech Classification

    Inzamam Mashood Nasir1, Muhammad Attique Khan1,*, Majed Alhaisoni2, Tanzila Saba3, Amjad Rehman3, Tassawar Iqbal4

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1017-1033, 2020, DOI:10.32604/cmes.2020.010943

    Abstract Comic character detection is becoming an exciting and growing research area in the domain of machine learning. In this regard, recently, many methods are proposed to provide adequate performance. However, most of these methods utilized the custom datasets, containing a few hundred images and fewer classes, to evaluate the performances of their models without comparing it, with some standard datasets. This article takes advantage of utilizing a standard publicly dataset taken from a competition, and proposes a generic data balancing technique for imbalanced dataset to enhance and enable the in-depth training of the CNN. In More >

Displaying 471-480 on page 48 of 519. Per Page