Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Effects of Normalised SSIM Loss on Super-Resolution Tasks

    Adéla Hamplová*, Tomáš Novák, Miroslav Žáček, Jiří Brožek

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3329-3349, 2025, DOI:10.32604/cmes.2025.066025 - 30 June 2025

    Abstract This study proposes a new component of the composite loss function minimised during training of the Super-Resolution (SR) algorithms—the normalised structural similarity index loss , which has the potential to improve the natural appearance of reconstructed images. Deep learning-based super-resolution (SR) algorithms reconstruct high-resolution images from low-resolution inputs, offering a practical means to enhance image quality without requiring superior imaging hardware, which is particularly important in medical applications where diagnostic accuracy is critical. Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity, visual artefacts may persist, making the design of… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Classification of Diseases in Date Palm Leaves

    Sameera V Mohd Sagheer1, Orwel P V2, P M Ameer3, Amal BaQais4, Shaeen Kalathil5,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1329-1349, 2025, DOI:10.32604/cmc.2025.063961 - 09 June 2025

    Abstract The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods. Conventional approaches rely on visual examination by experts to detect infected palm leaves, which is time intensive and susceptible to mistakes. This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability. The system leverages pretrained convolutional neural network architectures (InceptionV3, DenseNet, and MobileNet) to extract and examine leaf characteristics for classification purposes. A publicly accessible dataset comprising multiple… More >

  • Open Access

    ARTICLE

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

    Umit Cigdem Turhal1, Yasemin Onal1,*, Kutalmis Turhal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2307-2332, 2025, DOI:10.32604/cmes.2025.064269 - 30 May 2025

    Abstract The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other More > Graphic Abstract

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

  • Open Access

    ARTICLE

    An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks

    Ahmed Ben Atitallah1,*, Jannet Kamoun2,3, Meshari D. Alanazi1, Turki M. Alanazi4, Mohammed Albekairi1, Khaled Kaaniche1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5761-5779, 2025, DOI:10.32604/cmc.2025.063634 - 19 May 2025

    Abstract Breast Cancer (BC) remains a leading malignancy among women, resulting in high mortality rates. Early and accurate detection is crucial for improving patient outcomes. Traditional diagnostic tools, while effective, have limitations that reduce their accessibility and accuracy. This study investigates the use of Convolutional Neural Networks (CNNs) to enhance the diagnostic process of BC histopathology. Utilizing the BreakHis dataset, which contains thousands of histopathological images, we developed a CNN model designed to improve the speed and accuracy of image analysis. Our CNN architecture was designed with multiple convolutional layers, max-pooling layers, and a fully connected… More >

  • Open Access

    ARTICLE

    Digital Radiography-Based Pneumoconiosis Diagnosis via Vision Transformer Networks

    Qingpeng Wei1,#, Wenai Song1,#, Lizhen Fu1, Yi Lei2, Qing Wang2,*

    Journal on Artificial Intelligence, Vol.7, pp. 39-53, 2025, DOI:10.32604/jai.2025.063188 - 23 April 2025

    Abstract Pneumoconiosis, a prevalent occupational lung disease characterized by fibrosis and impaired lung function, necessitates early and accurate diagnosis to prevent further progression and ensure timely clinical intervention. This study investigates the potential application of the Vision Transformer (ViT) deep learning model for automated pneumoconiosis classification using digital radiography (DR) images. We utilized digital X-ray images from 934 suspected pneumoconiosis patients. A U-Net model was applied for lung segmentation, followed by Canny edge detection to divide the lungs into six anatomical regions. The segmented images were augmented and used to train the ViT model. Model component… More >

  • Open Access

    ARTICLE

    A Latency-Efficient Integration of Channel Attention for ConvNets

    Woongkyu Park1, Yeongyu Choi2, Mahammad Shareef Mekala3, Gyu Sang Choi1, Kook-Yeol Yoo1, Ho-youl Jung1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3965-3981, 2025, DOI:10.32604/cmc.2025.059966 - 06 March 2025

    Abstract Designing fast and accurate neural networks is becoming essential in various vision tasks. Recently, the use of attention mechanisms has increased, aimed at enhancing the vision task performance by selectively focusing on relevant parts of the input. In this paper, we concentrate on squeeze-and-excitation (SE)-based channel attention, considering the trade-off between latency and accuracy. We propose a variation of the SE module, called squeeze-and-excitation with layer normalization (SELN), in which layer normalization (LN) replaces the sigmoid activation function. This approach reduces the vanishing gradient problem while enhancing feature diversity and discriminability of channel attention. In… More >

  • Open Access

    ARTICLE

    From Detection to Explanation: Integrating Temporal and Spatial Features for Rumor Detection and Explaining Results Using LLMs

    Nanjiang Zhong*, Xinchen Jiang, Yuan Yao

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4741-4757, 2025, DOI:10.32604/cmc.2025.059536 - 06 March 2025

    Abstract The proliferation of rumors on social media has caused serious harm to society. Although previous research has attempted to use deep learning methods for rumor detection, they did not simultaneously consider the two key features of temporal and spatial domains. More importantly, these methods struggle to automatically generate convincing explanations for the detection results, which is crucial for preventing the further spread of rumors. To address these limitations, this paper proposes a novel method that integrates both temporal and spatial features while leveraging Large Language Models (LLMs) to automatically generate explanations for the detection results.… More >

  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    SGP-GCN: A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting

    Xin Liu1,*, Meng Sun1, Bo Lin2, Shibo Gu1

    Energy Engineering, Vol.122, No.3, pp. 1053-1072, 2025, DOI:10.32604/ee.2025.060489 - 07 March 2025

    Abstract Long-term petroleum production forecasting is essential for the effective development and management of oilfields. Due to its ability to extract complex patterns, deep learning has gained popularity for production forecasting. However, existing deep learning models frequently overlook the selective utilization of information from other production wells, resulting in suboptimal performance in long-term production forecasting across multiple wells. To achieve accurate long-term petroleum production forecast, we propose a spatial-geological perception graph convolutional neural network (SGP-GCN) that accounts for the temporal, spatial, and geological dependencies inherent in petroleum production. Utilizing the attention mechanism, the SGP-GCN effectively captures… More >

Displaying 21-30 on page 3 of 171. Per Page