Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Implementing Convolutional Neural Networks to Detect Dangerous Objects in Video Surveillance Systems

    Carlos Rojas1, Cristian Bravo1, Carlos Enrique Montenegro-Marín1, Rubén González-Crespo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5489-5507, 2025, DOI:10.32604/cmc.2025.067394 - 23 October 2025

    Abstract The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time. While traditional video surveillance relies on human monitoring, this approach suffers from limitations such as fatigue and delayed response times. This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety. Our approach leverages state-of-the-art convolutional neural networks (CNNs), specifically You Only Look Once version 4 (YOLOv4) and EfficientDet, for real-time object detection. The system was trained on a comprehensive… More >

  • Open Access

    ARTICLE

    SGO-DRE: A Squid Game Optimization-Based Ensemble Method for Accurate and Interpretable Skin Disease Diagnosis

    Areeba Masood Siddiqui1,2,*, Hyder Abbas3,4, Muhammad Asim5,6,*, Abdelhamied A. Ateya5, Hanaa A. Abdallah7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3135-3168, 2025, DOI:10.32604/cmes.2025.069926 - 30 September 2025

    Abstract Timely and accurate diagnosis of skin diseases is crucial as conventional methods are time-consuming and prone to errors. Traditional trial-and-error approaches often aggregate multiple models without optimization by resulting in suboptimal performance. To address these challenges, we propose a novel Squid Game Optimization-Dimension Reduction-based Ensemble (SGO-DRE) method for the precise diagnosis of skin diseases. Our approach begins by selecting pre-trained models named MobileNetV1, DenseNet201, and Xception for robust feature extraction. These models are enhanced with dimension reduction blocks to improve efficiency. To tackle the aggregation problem of various models, we leverage the Squid Game Optimization… More >

  • Open Access

    ARTICLE

    Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet

    Carlos Quiterio Gómez Muñoz1, Fausto Pedro García Márquez2,*, Jorge Bernabé Sanjuán3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3369-3386, 2025, DOI:10.32604/cmes.2025.069225 - 30 September 2025

    Abstract Due to the continuous increase in global energy demand, photovoltaic solar energy generation and associated maintenance requirements have significantly expanded. One critical maintenance challenge in photovoltaic installations is detecting hot spots, localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage. Traditional methods for detecting these defects rely on manual inspections using thermal imaging, which are costly, labor-intensive, and impractical for large-scale installations. This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture. The first convolutional neural network efficiently detects More >

  • Open Access

    ARTICLE

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

    Emad Sami Jaha*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3645-3678, 2025, DOI:10.32604/cmes.2025.068681 - 30 September 2025

    Abstract The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification. Among many feasible techniques for ear biometric recognition, convolutional neural network (CNN) models have recently offered high-performance and reliable systems. However, their performance can still be further improved using the capabilities of soft biometrics, a research question yet to be investigated. This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits. It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving… More > Graphic Abstract

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

  • Open Access

    ARTICLE

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

    Soumia Zertal1,2,*, Asma Saighi1,2, Sofia Kouah1,2, Souham Meshoul3,*, Zakaria Laboudi2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3737-3782, 2025, DOI:10.32604/cmes.2025.068558 - 30 September 2025

    Abstract Cardiovascular diseases (CVDs) continue to present a leading cause of mortality worldwide, emphasizing the importance of early and accurate prediction. Electrocardiogram (ECG) signals, central to cardiac monitoring, have increasingly been integrated with Deep Learning (DL) for real-time prediction of CVDs. However, DL models are prone to performance degradation due to concept drift and to catastrophic forgetting. To address this issue, we propose a real-time CVDs prediction approach, referred to as ADWIN-GFR that combines Convolutional Neural Network (CNN) layers, for spatial feature extraction, with Gated Recurrent Units (GRU), for temporal modeling, alongside adaptive drift detection and… More > Graphic Abstract

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

  • Open Access

    ARTICLE

    CGB-Net: A Novel Convolutional Gated Bidirectional Network for Enhanced Sleep Posture Classification

    Hoang-Dieu Vu1,2, Duc-Nghia Tran3, Quang-Tu Pham1, Ngoc-Linh Nguyen4,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2819-2835, 2025, DOI:10.32604/cmc.2025.068355 - 23 September 2025

    Abstract This study presents CGB-Net, a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer, with direct applicability to gastroesophageal reflux disease (GERD) monitoring. Unlike conventional approaches limited to four basic postures, CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions, providing enhanced resolution for personalized health assessment. The architecture introduces a unique integration of three complementary components: 1D Convolutional Neural Networks (1D-CNN) for efficient local spatial feature extraction, Gated Recurrent Units (GRU) to capture short-term temporal dependencies with reduced computational complexity, and Bidirectional Long Short-Term Memory… More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    A Quality of Service Analysis of FPGA-Accelerated Conv2D Architectures for Brain Tumor Multi-Classification

    Ayoub Mhaouch1,*, Wafa Gtifa2, Turke Althobaiti3, Hamzah Faraj4, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5637-5663, 2025, DOI:10.32604/cmc.2025.065525 - 30 July 2025

    Abstract In medical imaging, accurate brain tumor classification in medical imaging requires real-time processing and efficient computation, making hardware acceleration essential. Field Programmable Gate Arrays (FPGAs) offer parallelism and reconfigurability, making them well-suited for such tasks. In this study, we propose a hardware-accelerated Convolutional Neural Network (CNN) for brain cancer classification, implemented on the PYNQ-Z2 FPGA. Our approach optimizes the first Conv2D layer using different numerical representations: 8-bit fixed-point (INT8), 16-bit fixed-point (FP16), and 32-bit fixed-point (FP32), while the remaining layers run on an ARM Cortex-A9 processor. Experimental results demonstrate that FPGA acceleration significantly outperforms the… More >

  • Open Access

    ARTICLE

    Real-Time Larval Stage Classification of Black Soldier Fly Using an Enhanced YOLO11-DSConv Model

    An-Chao Tsai*, Chayanon Pookunngern

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2455-2471, 2025, DOI:10.32604/cmc.2025.067413 - 03 July 2025

    Abstract Food waste presents a major global environmental challenge, contributing to resource depletion, greenhouse gas emissions, and climate change. Black Soldier Fly Larvae (BSFL) offer an eco-friendly solution due to their exceptional ability to decompose organic matter. However, accurately identifying larval instars is critical for optimizing feeding efficiency and downstream applications, as different stages exhibit only subtle visual differences. This study proposes a real-time mobile application for automatic classification of BSFL larval stages. The system distinguishes between early instars (Stages 1–4), suitable for food waste processing and animal feed, and late instars (Stages 5–6), optimal for… More >

  • Open Access

    ARTICLE

    Enhancing Android Malware Detection with XGBoost and Convolutional Neural Networks

    Atif Raza Zaidi1, Tahir Abbas1,*, Ali Daud2,*, Omar Alghushairy3, Hussain Dawood4, Nadeem Sarwar5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3281-3304, 2025, DOI:10.32604/cmc.2025.063646 - 03 July 2025

    Abstract Safeguarding against malware requires precise machine-learning algorithms to classify harmful apps. The Drebin dataset of 15,036 samples and 215 features yielded significant and reliable results for two hybrid models, CNN + XGBoost and KNN + XGBoost. To address the class imbalance issue, SMOTE (Synthetic Minority Over-sampling Technique) was used to preprocess the dataset, creating synthetic samples of the minority class (malware) to balance the training set. XGBoost was then used to choose the most essential features for separating malware from benign programs. The models were trained and tested using 6-fold cross-validation, measuring accuracy, precision, recall,… More >

Displaying 11-20 on page 2 of 171. Per Page