Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (121)
  • Open Access

    ABSTRACT

    A Reduced Order Model for the Fast Predictions of Reactivity and Neutron Distributions within Reactor Cores

    Andrew Buchan1, Simon Jewer2, Ionel Michael Navon3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 179-179, 2019, DOI:10.32604/icces.2019.05396

    Abstract A new Reduced Order Model (ROM) is developed for solving the neutron eigenvalue problem for the fast and accurate prediction and simulation of the neutron flux within light water reactor cores. The method of Proper Orthogonal Decomposition is employed to form the ROM which uses snapshots obtained from a full order model based on the finite element discretisation of the spatial dependence of the multi-group neutron diffusion equation. We detail how the temperature variation and control rod adjustments can be efficiently integrated into the model and their influence then accurately predicted within the model's solution. This is particularly important as… More >

  • Open Access

    ABSTRACT

    Simulations of Core Collapse Supernova Explosion on PEZY-SC Processors and GPUs

    Hideo Matsufuru1,*, Kohsuke Sumiyoshi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 90-90, 2019, DOI:10.32604/icces.2019.05390

    Abstract The core collapse supernovae are one of key phenomena to understand the history of the Universe and the origin of heavy elements. To understand their explosion mechanism, large scale numerical simulations are essential that require to solve a multi-physics system described by coupled equations of hydrodynamics and neutrino-radiation transfer in multidimensions. Since the neutrino transfer is governed by the Boltzmann equation in six-dimensional space, necessary computational resource rapidly increases as the number of grids in simulations grows. So far numerical studies have been performed mostly on massively parallel computers and only a few studies have been made using accelerator architectures,… More >

  • Open Access

    ARTICLE

    Pulp and Paper from Sugarcane: Properties of Rind and Core Fractions

    Lísias Pereira Novo1,2*, Julien Bras3,4, Mohamed Naceur Belgacem3,4, Antonio Aprigio da Silva Curvelo2

    Journal of Renewable Materials, Vol.6, No.2, pp. 160-168, 2018, DOI:10.7569/JRM.2017.634165

    Abstract Two distinct lignocellulosic fractions (rind and core) can be obtained through a physical separation of sugarcane stalks. Although presenting differences in morphology, both fractions can be employed to produce pulps and papers. The pulps and paper sheets produced from the core and rind fractions were characterized by their chemical composition, physical properties and mechanical properties. The pulps obtained from the core presented a higher amount of fines, lower drainage ability and rendered denser and stiffer sheets. The pulps from the rind, which have a higher content of fibers and higher degree of polymerization, produced sheets with higher air permeability and… More >

  • Open Access

    ARTICLE

    Isocyanate-Free Polyurethanes by Coreaction of Condensed Tannins with Aminated Tannins

    M. Thébault1,2, A. Pizzi13*, F.J. Santiago-Medina1, F.M. Al-Marzouki3, S. Abdalla3

    Journal of Renewable Materials, Vol.5, No.1, pp. 21-29, 2017, DOI:10.7569/JRM.2016.634116

    Abstract Isocyanate-free polyurethane resins biosourced to a very high percentage level were prepared by the reaction of aminated mimosa tannin extract with commercial mimosa tannin extract prereacted with dimethyl carbonate. The reaction took place with ease at ambient temperature. Indications were that the polyurethanes obtained formed a hard film when cured at a temperature higher than 100 °C. Furthermore, the carbohydrate fraction of the tannin extract also appeared to be carbonated and reacted to generate isocyanate-free polyurethane linkages with the aminated tannins. This indicated that not only the polyphenolic fraction of the tannin extract, but also its other major component, can… More >

  • Open Access

    ARTICLE

    Efficiently and Conveniently Heparin/ PEG-PCL Core-Shell Microcarriers Fabrication and Optimization via Coaxial-Electrospraying

    Ying Mao1, Chaojing Li1, Peng Ge1, Fujun Wang1,*, Lu Wang1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 143-154, 2018, DOI: 10.3970/mcb.2018.03987

    Abstract Heparin/ PEG-PCL core-shell microcarriers were fabricated in one-step via coaxial-electrospraying technology. Optimization of the coaxial-electrospraying processing is by controlling the PEG-PCL concentration, applied voltage, receiving distance, and feed rate. The influence of the electrospray parameters on microsphere morphology was studied by optical microscopy and scanning electron microscopy. The functional groups and components of the electrosprayed microspheres were characterized by Fourier transform infrared spectroscopy (FTIR). Transmission electron microscope (TEM) observation proved the core-shell structure of heparin-loaded PEG-PCL microspheres. Drug loading and releasing study demonstrated that PEG-PCL concentration could control the encapsulation efficiency and releasing activity of the heparin in the microspheres.… More >

  • Open Access

    ARTICLE

    An Influence Maximization Algorithm Based on the Mixed Importance of Nodes

    Yong Hua1, Bolun Chen1,2,*, Yan Yuan1, Guochang Zhu1, Jialin Ma1

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 517-531, 2019, DOI:10.32604/cmc.2019.05278

    Abstract The influence maximization is the problem of finding k seed nodes that maximize the scope of influence in a social network. Therefore, the comprehensive influence of node needs to be considered, when we choose the most influential node set consisted of k seed nodes. On account of the traditional methods used to measure the influence of nodes, such as degree centrality, betweenness centrality and closeness centrality, consider only a single aspect of the influence of node, so the influence measured by traditional methods mentioned above of node is not accurate. In this paper, we obtain the following result through experimental… More >

  • Open Access

    ARTICLE

    Three Dimensional Natural Frequency Analysis of Sandwich Plates with Functionally Graded Core Using Hybrid Meshless Local Petrov-Galerkin Method and Artificial Neural Network

    Foad Nazari1, Mohammad Hossein Abolbashari1,2, Seyed Mahmoud Hosseini3

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.4, pp. 271-299, 2015, DOI:10.3970/cmes.2015.105.271

    Abstract Present study is concerned with three dimensional natural frequency analysis of functionally graded sandwich rectangular plates using Meshless Local Petrov-Galerkin (MLPG) method and Artificial Neural Networks (ANNs).The plate consists of two homogeneous face sheets and a power-law FGM core. Natural frequencies of the plate are obtained by 3D MLPG method and are verified with available references. Convergence study of the first four natural frequencies for different node numbers is the next step. Also, effects of two parameters of “FG core to plate thickness ratio” and “volume fraction index” on natural frequencies of plate are investigated. Then, four distinct ANNs are… More >

  • Open Access

    ARTICLE

    Long-term Analyses of Concrete-Filled Steel Tubular Arches Accounting for Interval Uncertainty

    Yong-Lin Pi1, Mark Andrew Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 233-253, 2014, DOI:10.3970/cmes.2014.099.233

    Abstract Creep and shrinkage of the concrete core of a concrete-filled steel tubular (CFST) arch under sustained loading are inevitable, and cause a long-term change of the equilibrium configuration of the CFST arch. As the equilibrium configuration changes continuously, the long-term radial and axial displacements of the CFST arch, stress distributions as well as the internal forces in the steel tube and the concrete core change substantially with time. Creep and shrinkage of the concrete core are related to a number of its material parameters such as its creep coefficient, aging coefficient, and shrinkage strain. The values of these parameters differ… More >

  • Open Access

    ARTICLE

    Creep of Concrete Core and Time-Dependent Non-Linear Behaviour and Buckling of Shallow Concrete-Filled Steel Tubular Arches

    K. Luo1, Y. L. Pi1, W. Gao1, M. A. Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 31-58, 2013, DOI:10.3970/cmes.2013.095.031

    Abstract This paper presents a theoretical analysis for the time-dependent nonlinear behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches under a sustained central concentrated load. The virtual work method is used to establish the differential equations of equilibrium for the time-dependent behaviour and buckling analyses of shallow CFST arches, and the age-adjusted effective modulus method is adopted to model the creep behaviour of the concrete core. Analytical solutions of time-dependent displacements and internal forces of shallow CFST arches are derived. It has been found that under a sustained central concentrated load, the deformations and bending moments in a shallow… More >

  • Open Access

    ARTICLE

    Soft Core Plane State Structures Under Static Loads Using GDQFEM and Cell Method

    E. Viola1, F. Tornabene1, E. Ferretti1, N. Fantuzzi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.4, pp. 301-329, 2013, DOI:10.3970/cmes.2013.094.301

    Abstract The aim of this work is to study the static behavior of 2D soft core plane state structures. Deflections and inter-laminar stresses caused by forces can have serious consequences for strength and safety of these structures. Therefore, an accurate identification of the variables in hand is of considerable importance for their technical design. It is well-known that for complex plane structures there is no analytical solution, only numerical procedures can be used to solve them. In this study two numerical techniques will be taken mainly into account: the Generalized Differential Quadrature Finite Element Method (GDQFEM) and the Cell Method (CM).… More >

Displaying 101-110 on page 11 of 121. Per Page