Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    MARCS: A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning

    Yiqin Wang1, Yufeng Wang1,*, Jianhua Ma2, Qun Jin3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4431-4449, 2025, DOI:10.32604/cmc.2025.059880 - 06 March 2025

    Abstract Opportunistic mobile crowdsensing (MCS) non-intrusively exploits human mobility trajectories, and the participants’ smart devices as sensors have become promising paradigms for various urban data acquisition tasks. However, in practice, opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform. On the one hand, participants face uncertainties in conducting MCS tasks, including their mobility and implicit interactions among participants, and participants’ economic returns given by the MCS data platform are determined by not only their own actions but also other participants’ strategic actions. On the other hand, the platform can… More >

  • Open Access

    REVIEW

    A Survey on Supervised, Unsupervised, and Semi-Supervised Approaches in Crowd Counting

    Jianyong Wang1, Mingliang Gao1, Qilei Li2, Hyunbum Kim3, Gwanggil Jeon3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3561-3582, 2024, DOI:10.32604/cmc.2024.058637 - 19 December 2024

    Abstract Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety. Crowd counting has attracted considerable attention in the field of computer vision, leading to the development of numerous advanced models and methodologies. These approaches vary in terms of supervision techniques, network architectures, and model complexity. Currently, most crowd counting methods rely on fully supervised learning, which has proven to be effective. However, this approach presents challenges in real-world scenarios, where labeled data and ground-truth… More >

  • Open Access

    ARTICLE

    PARE: Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things

    Peicong He, Yang Xin*, Yixian Yang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3067-3084, 2024, DOI:10.32604/cmc.2024.054777 - 15 August 2024

    Abstract The proliferation of intelligent, connected Internet of Things (IoT) devices facilitates data collection. However, task workers may be reluctant to participate in data collection due to privacy concerns, and task requesters may be concerned about the validity of the collected data. Hence, it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing (SC) data collection tasks with IoT. To this end, this paper proposes a privacy-preserving data reliability evaluation for SC in IoT, named PARE. First, we design a data uploading format using blockchain More >

  • Open Access

    ARTICLE

    Blockchain-Assisted Unsupervised Learning Method for Crowdsourcing Reputation Management

    Tianyu Wang1,2, Kongyang Chen2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2297-2314, 2024, DOI:10.32604/cmes.2024.049964 - 08 July 2024

    Abstract Crowdsourcing holds broad applications in information acquisition and dissemination, yet encounters challenges pertaining to data quality assessment and user reputation management. Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores, thereby elevating the quality and dependability of crowdsourced data. However, these mechanisms face several challenges in traditional crowdsourcing systems: 1) platform security lacks robust guarantees and may be susceptible to attacks; 2) there exists a potential for large-scale privacy breaches; and 3) incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations, occasionally lacking… More >

  • Open Access

    ARTICLE

    Citizens’ Mental Health Issues and Psychological Trauma Experience due to a Crowd-Crush Disaster in Korea

    Yun-Jung Choi1,#,*, Jae-Won Kwak2,#, Hae-In Namgung3

    International Journal of Mental Health Promotion, Vol.26, No.6, pp. 439-447, 2024, DOI:10.32604/ijmhp.2024.050458 - 28 June 2024

    Abstract This study evaluated the state of anxiety, depression, post-traumatic stress disorder, general mental health, and mental well-being among citizens after a crowd-crush disaster in Korea. Individuals who experienced the crowd crush had significantly higher anxiety, depression, and post-traumatic stress disorder (PTSD) scores than those who did not (p < 0.001). Additionally, people who avoided the disaster area had significantly higher depression and PTSD scores than those who did not avoid the area (p < 0.001). Those who directly witnessed the Seoul Halloween crowd crush had a significant difference in PTSD levels in either group than those More >

  • Open Access

    ARTICLE

    Deep Learning Based Efficient Crowd Counting System

    Waleed Khalid Al-Ghanem1, Emad Ul Haq Qazi2,*, Muhammad Hamza Faheem2, Syed Shah Amanullah Quadri3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4001-4020, 2024, DOI:10.32604/cmc.2024.048208 - 20 June 2024

    Abstract Estimation of crowd count is becoming crucial nowadays, as it can help in security surveillance, crowd monitoring, and management for different events. It is challenging to determine the approximate crowd size from an image of the crowd’s density. Therefore in this research study, we proposed a multi-headed convolutional neural network architecture-based model for crowd counting, where we divided our proposed model into two main components: (i) the convolutional neural network, which extracts the feature across the whole image that is given to it as an input, and (ii) the multi-headed layers, which make it easier More >

  • Open Access

    ARTICLE

    Lightweight Res-Connection Multi-Branch Network for Highly Accurate Crowd Counting and Localization

    Mingze Li, Diwen Zheng, Shuhua Lu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2105-2122, 2024, DOI:10.32604/cmc.2024.048928 - 15 May 2024

    Abstract Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis, achieving tremendous success recently with the development of deep learning. However, there have been still many challenges including crowd multi-scale variations and high network complexity, etc. To tackle these issues, a lightweight Res-connection multi-branch network (LRMBNet) for highly accurate crowd counting and localization is proposed. Specifically, using improved ShuffleNet V2 as the backbone, a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters. A light multi-branch structure with different expansion rate… More >

  • Open Access

    ARTICLE

    A Game-Theoretic Approach to Safe Crowd Evacuation in Emergencies

    Maria Gul1, Imran Ali Khan1, Gohar Zaman2, Atta Rahman3,*, Jamaluddin Mir2, Sardar Asad Ali Biabani4,5, May Issa Aldossary6, Mustafa Youldash7, Ashraf Saadeldeen8, Maqsood Mahmud9, Asiya Abdus Salam6, Dania Alkhulaifi3, Abdullah AlTurkey3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1631-1657, 2024, DOI:10.32604/cmc.2024.048289 - 25 April 2024

    Abstract Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, many researchers proposed game theoretic models to avoid and remove obstacles for crowd evacuation. Game theoretical models aim to study and analyze the strategic behaviors of individuals within a crowd and their interactions during the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. These models consider a group of individuals as homogeneous objects with the same goals, involve complex mathematical formulation, and cannot model real-world scenarios such as panic, environmental information, crowds that move dynamically,… More >

  • Open Access

    ARTICLE

    Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs

    Kai Wei1, Song Yu2, Qingxian Pan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 607-622, 2024, DOI:10.32604/cmc.2024.048240 - 25 April 2024

    Abstract Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation. While traditional methods for task allocation can help reduce costs and improve efficiency, they may encounter challenges when dealing with abnormal data flow nodes, leading to decreased allocation accuracy and efficiency. To address these issues, this study proposes a novel two-part invalid detection task allocation framework. In the first step, an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data. Compared to the baseline method, the model achieves an approximately 4% increase in the F1 value More >

  • Open Access

    ARTICLE

    Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis

    Yu Li, Mingxiao Li, Dongyang Ou*, Junjie Guo, Fangyuan Pan

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 893-909, 2024, DOI:10.32604/cmes.2023.031350 - 30 December 2023

    Abstract With the rapid development of mobile Internet, spatial crowdsourcing has become more and more popular. Spatial crowdsourcing consists of many different types of applications, such as spatial crowd-sensing services. In terms of spatial crowd-sensing, it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models. Besides collecting sensing data, spatial crowdsourcing also includes spatial delivery services like DiDi and Uber. Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications. Previous research conducted task assignments via traditional matching approaches or using simple… More > Graphic Abstract

    Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis

Displaying 1-10 on page 1 of 53. Per Page