Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (133)
  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    Pavitra Vasudevan1, R. Faerie Mattins1, S. Srivarshan1, Ashvath Narayanan1, Gayatri Wadhwani1, R. Parvathi1, R. Maheswari2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331

    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring the progress of a patient… More >

  • Open Access

    REVIEW

    Arabic Optical Character Recognition: A Review

    Salah Alghyaline*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1825-1861, 2023, DOI:10.32604/cmes.2022.024555

    Abstract This study aims to review the latest contributions in Arabic Optical Character Recognition (OCR) during the last decade, which helps interested researchers know the existing techniques and extend or adapt them accordingly. The study describes the characteristics of the Arabic language, different types of OCR systems, different stages of the Arabic OCR system, the researcher’s contributions in each step, and the evaluation metrics for OCR. The study reviews the existing datasets for the Arabic OCR and their characteristics. Additionally, this study implemented some preprocessing and segmentation stages of Arabic OCR. The study compares the performance of the existing methods in… More >

  • Open Access

    ARTICLE

    Reducing Dataset Specificity for Deepfakes Using Ensemble Learning

    Qaiser Abbas1, Turki Alghamdi1, Yazed Alsaawy1, Tahir Alyas2,*, Ali Alzahrani1, Khawar Iqbal Malik3, Saira Bibi4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4261-4276, 2023, DOI:10.32604/cmc.2023.034482

    Abstract The emergence of deep fake videos in recent years has made image falsification a real danger. A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content. Because of how clever these videos are frequently, Manipulation is challenging to spot. Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human. In earlier times, it was not so easy to alter the videos, which required expertise in the domain… More >

  • Open Access

    ARTICLE

    An Intelligence Computational Approach for the Fractional 4D Chaotic Financial Model

    Wajaree Weera1, Thongchai Botmart1,*, Charuwat Chantawat1, Zulqurnain Sabir2,3, Waleed Adel4,5, Muhammad Asif Zahoor Raja6, Muhammad Kristiawan7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2711-2724, 2023, DOI:10.32604/cmc.2023.033233

    Abstract The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure. The stochastic procedures mainly depend on the combination of the artificial neural network (ANNs) along with the Levenberg-Marquardt Backpropagation (LMB) i.e., ANNs-LMB technique. The fractional-order term is defined in the Caputo sense and three cases are solved using the proposed technique for different values of the fractional order α. The values of the fractional order derivatives to solve the fractional 4-D chaotic financial system are used between 0 and 1. The data… More >

  • Open Access

    ARTICLE

    Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems

    Reem Alkanhel1,*, Doaa Sami Khafaga2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Rashid Amin7, Mostafa Abotaleb8, B. M. El-den6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2695-2709, 2023, DOI:10.32604/cmc.2023.033153

    Abstract The Internet of Things (IoT) is a modern approach that enables connection with a wide variety of devices remotely. Due to the resource constraints and open nature of IoT nodes, the routing protocol for low power and lossy (RPL) networks may be vulnerable to several routing attacks. That’s why a network intrusion detection system (NIDS) is needed to guard against routing assaults on RPL-based IoT networks. The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks. Therefore, we propose in this paper a novel approach to balance… More >

  • Open Access

    ARTICLE

    Hybrid Dipper Throated and Grey Wolf Optimization for Feature Selection Applied to Life Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Mostafa Abotaleb4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4531-4545, 2023, DOI:10.32604/cmc.2023.033042

    Abstract Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning. Each feature in a dataset has 2n possible subsets, making it challenging to select the optimum collection of features using typical methods. As a result, a new metaheuristics-based feature selection method based on the dipper-throated and grey-wolf optimization (DTO-GW) algorithms has been developed in this research. Instability can result when the selection of features is subject to metaheuristics, which can lead to a wide range of results. Thus, we adopted hybrid optimization in our method of optimizing, which allowed us… More >

  • Open Access

    ARTICLE

    Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Fadwa Alrowais1,*, Sunil Kumar3, Abdelhameed Ibrahim4, Abdelaziz A. Abdelhamid5,6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4027-4041, 2023, DOI:10.32604/cmc.2023.033039

    Abstract In data mining and machine learning, feature selection is a critical part of the process of selecting the optimal subset of features based on the target data. There are 2n potential feature subsets for every n features in a dataset, making it difficult to pick the best set of features using standard approaches. Consequently, in this research, a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm (ASSOA) has been proposed. When using metaheuristics to pick features, it is common for the selection of features to vary across runs, which can lead to instability. Because of… More >

  • Open Access

    ARTICLE

    GA-Stacking: A New Stacking-Based Ensemble Learning Method to Forecast the COVID-19 Outbreak

    Walaa N. Ismail1,2,*, Hessah A. Alsalamah3,4, Ebtesam Mohamed2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3945-3976, 2023, DOI:10.32604/cmc.2023.031194

    Abstract As a result of the increased number of COVID-19 cases, Ensemble Machine Learning (EML) would be an effective tool for combatting this pandemic outbreak. An ensemble of classifiers can improve the performance of single machine learning (ML) classifiers, especially stacking-based ensemble learning. Stacking utilizes heterogeneous-base learners trained in parallel and combines their predictions using a meta-model to determine the final prediction results. However, building an ensemble often causes the model performance to decrease due to the increasing number of learners that are not being properly selected. Therefore, the goal of this paper is to develop and evaluate a generic, data-independent… More >

  • Open Access

    ARTICLE

    Regulatory Genes Through Robust-SNR for Binary Classification Within Functional Genomics Experiments

    Muhammad Hamraz1, Dost Muhammad Khan1, Naz Gul1, Amjad Ali1, Zardad Khan1, Shafiq Ahmad2, Mejdal Alqahtani2, Akber Abid Gardezi3, Muhammad Shafiq4,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3663-3677, 2023, DOI:10.32604/cmc.2023.030064

    Abstract The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio (SNR). The proposed method utilizes the robust measures of location i.e., the “Median” as well as the measures of variation i.e., “Median absolute deviation (MAD) and Interquartile range (IQR)” in the SNR. By this way, two independent robust signal-to-noise ratios have been proposed. The proposed method selects the most informative genes/features by combining the minimum subset of genes or features obtained via the greedy search approach with top-ranked genes selected through the robust signal-to-noise ratio (RSNR). The results obtained via… More >

  • Open Access

    ARTICLE

    CEMA-LSTM: Enhancing Contextual Feature Correlation for Radar Extrapolation Using Fine-Grained Echo Datasets

    Zhiyun Yang1,#, Qi Liu1,#,*, Hao Wu1, Xiaodong Liu2, Yonghong Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 45-64, 2023, DOI:10.32604/cmes.2022.022045

    Abstract Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding arrangements in advance to deal with the possible impact of upcoming heavy rain. Recent relevant research activities have shown their concerns on various deep learning models for radar echo extrapolation, where radar echo maps were used to predict their consequent moment, so as to recognize potential severe convective weather events. However, these approaches suffer from an inaccurate prediction of echo dynamics and unreliable depiction of echo aggregation or dissipation, due to the size limitation of convolution filter, lack of global feature, and less attention to… More > Graphic Abstract

    CEMA-LSTM: Enhancing Contextual Feature Correlation for Radar Extrapolation Using Fine-Grained Echo Datasets

Displaying 51-60 on page 6 of 133. Per Page