Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (210)
  • Open Access

    ARTICLE

    YOLO-SIFD: YOLO with Sliced Inference and Fractal Dimension Analysis for Improved Fire and Smoke Detection

    Mariam Ishtiaq1,2, Jong-Un Won1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5343-5361, 2025, DOI:10.32604/cmc.2025.061466 - 06 March 2025

    Abstract Fire detection has held stringent importance in computer vision for over half a century. The development of early fire detection strategies is pivotal to the realization of safe and smart cities, inhabitable in the future. However, the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets, lack of diversity, and class imbalance. In this work, we explore the possible ways forward to overcome these challenges posed by available datasets. We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art (SOTA) vision-based models and proposeMore >

  • Open Access

    ARTICLE

    An Intrusion Detection System Based on HiTar-2024 Dataset Generation from LOG Files for Smart Industrial Internet-of-Things Environment

    Tarak Dhaouadi1, Hichem Mrabet1,2,*, Adeeb Alhomoud3, Abderrazak Jemai1,4

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4535-4554, 2025, DOI:10.32604/cmc.2025.060935 - 06 March 2025

    Abstract The increasing adoption of Industrial Internet of Things (IIoT) systems in smart manufacturing is leading to raise cyberattack numbers and pressing the requirement for intrusion detection systems (IDS) to be effective. However, existing datasets for IDS training often lack relevance to modern IIoT environments, limiting their applicability for research and development. To address the latter gap, this paper introduces the HiTar-2024 dataset specifically designed for IIoT systems. As a consequence, that can be used by an IDS to detect imminent threats. Likewise, HiTar-2024 was generated using the AREZZO simulator, which replicates realistic smart manufacturing scenarios.… More >

  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    REVIEW

    A Review of Joint Extraction Techniques for Relational Triples Based on NYT and WebNLG Datasets

    Chenglong Mi1, Huaibin Qin1,*, Quan Qi1, Pengxiang Zuo2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3773-3796, 2025, DOI:10.32604/cmc.2024.059455 - 06 March 2025

    Abstract In recent years, with the rapid development of deep learning technology, relational triplet extraction techniques have also achieved groundbreaking progress. Traditional pipeline models have certain limitations due to error propagation. To overcome the limitations of traditional pipeline models, recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework. To support future research, this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction. The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream… More >

  • Open Access

    ARTICLE

    A Bioinspired Method for Optimal Task Scheduling in Fog-Cloud Environment

    Ferzat Anka1, Ghanshyam G. Tejani2,3,*, Sunil Kumar Sharma4, Mohammed Baljon5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2691-2724, 2025, DOI:10.32604/cmes.2025.061522 - 03 March 2025

    Abstract Due to the intense data flow in expanding Internet of Things (IoT) applications, a heavy processing cost and workload on the fog-cloud side become inevitable. One of the most critical challenges is optimal task scheduling. Since this is an NP-hard problem type, a metaheuristic approach can be a good option. This study introduces a novel enhancement to the Artificial Rabbits Optimization (ARO) algorithm by integrating Chaotic maps and Levy flight strategies (CLARO). This dual approach addresses the limitations of standard ARO in terms of population diversity and convergence speed. It is designed for task scheduling… More >

  • Open Access

    ARTICLE

    A Heavy Tailed Model Based on Power XLindley Distribution with Actuarial Data Applications

    Mohammed Elgarhy1, Amal S. Hassan2, Najwan Alsadat3, Oluwafemi Samson Balogun4, Ahmed W. Shawki5, Ibrahim E. Ragab6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2547-2583, 2025, DOI:10.32604/cmes.2025.058362 - 03 March 2025

    Abstract Accurately modeling heavy-tailed data is critical across applied sciences, particularly in finance, medicine, and actuarial analysis. This work presents the heavy-tailed power XLindley distribution (HTPXLD), a unique heavy-tailed distribution. Adding one more parameter to the power XLindley distribution improves this new distribution, especially when modeling leptokurtic lifetime data. The suggested density provides greater flexibility with asymmetric forms and different degrees of peakedness. Its statistical features, like the quantile function, moments, extropy measures, incomplete moments, stochastic ordering, and stress-strength parameters, are explored. We further investigate its use in actuarial science through the computation of pertinent metrics,… More >

  • Open Access

    ARTICLE

    Advancing Brain Tumor Classification: Evaluating the Efficacy of Machine Learning Models Using Magnetic Resonance Imaging

    Khalid Jamil1, Wahab Khan1, Bilal Khan2, Sarwar Shah Khan2,*

    Digital Engineering and Digital Twin, Vol.3, pp. 1-16, 2025, DOI:10.32604/dedt.2025.058943 - 28 February 2025

    Abstract Brain tumors are one of the deadliest cancers, partly because they’re often difficult to detect early or with precision. Standard Magnetic Resonance Imaging (MRI) imaging, though essential, has limitations, it can miss subtle or early-stage tumors, which delays diagnosis and affects patient outcomes. This study aims to tackle these challenges by exploring how machine learning (ML) can improve the accuracy of brain tumor identification from MRI scans. Motivated by the potential for artificial intillegence (AI) to boost diagnostic accuracy where traditional methods fall short, we tested several ML models, with a focus on the K-Nearest More >

  • Open Access

    ARTICLE

    Addressing Imbalance in Health Datasets: A New Method NR-Clustering SMOTE and Distance Metric Modification

    Hairani Hairani1,2, Triyanna Widiyaningtyas1,*, Didik Dwi Prasetya1, Afrig Aminuddin3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2931-2949, 2025, DOI:10.32604/cmc.2024.060837 - 17 February 2025

    Abstract An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of… More >

  • Open Access

    ARTICLE

    A Study on Polyp Dataset Expansion Algorithm Based on Improved Pix2Pix

    Ziji Xiao1, Kaibo Yang1, Mingen Zhong1,*, Kang Fan2, Jiawei Tan2, Zhiying Deng1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2665-2686, 2025, DOI:10.32604/cmc.2024.058345 - 17 February 2025

    Abstract The polyp dataset involves the confidentiality of medical records, so it might be difficult to obtain datasets with accurate annotations. This problem can be effectively solved by expanding the polyp data set with algorithms. The traditional polyp dataset expansion scheme usually requires the use of two models or traditional visual methods. These methods are both tedious and difficult to provide new polyp features for training data. Therefore, our research aims to efficiently generate high-quality polyp samples, so as to effectively expand the polyp dataset. In this study, we first added the attention mechanism to the… More >

  • Open Access

    ARTICLE

    A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification

    Umapathi Krishnamoorthy1,*, Shanmugam Jagan2, Mohammed Zakariah3, Abdulaziz S. Almazyad4,*, K. Gurunathan5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3903-3926, 2024, DOI:10.32604/cmc.2024.055910 - 19 December 2024

    Abstract Brain signal analysis from electroencephalogram (EEG) recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure. Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings. In the current seizure detection and classification landscape, most models primarily focus on binary classification—distinguishing between seizure and non-seizure states. While effective for basic detection, these models fail to address the nuanced stages of seizures and the intervals between them. Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure… More >

Displaying 51-60 on page 6 of 210. Per Page