Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (164)
  • Open Access

    ARTICLE

    A High-order Coupled Compact Integrated RBF Approximation Based Domain Decomposition Algorithm for Second-order Differential Problems

    C.M.T. Tien1, N. Pham-Sy1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 251-304, 2015, DOI:10.3970/cmes.2015.104.251

    Abstract This paper presents a high-order coupled compact integrated RBF (CC IRBF) approximation based domain decomposition (DD) algorithm for the discretisation of second-order differential problems. Several Schwarz DD algorithms, including one-level additive/ multiplicative and two-level additive/ multiplicative/ hybrid, are employed. The CCIRBF based DD algorithms are analysed with different mesh sizes, numbers of subdomains and overlap sizes for Poisson problems. Our convergence analysis shows that the CCIRBF two-level multiplicative version is the most effective algorithm among various schemes employed here. Especially, the present CCIRBF two-level method converges quite rapidly even when the domain is divided into many subdomains, which shows great… More >

  • Open Access

    ARTICLE

    How to Select the Value of the Convergence Parameter in the Adomian Decomposition Method

    Lei Lu1,2, Jun-Sheng Duan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 35-52, 2014, DOI:10.3970/cmes.2014.097.035

    Abstract In this paper, we investigate the problem of selecting of the convergence parameter c in the Adomian decomposition method. Through the curves of the n-term approximations Φn(t;c) versus c for different specified values of n and t, we demonstrate how to determine the value of c such that the decomposition series has a larger effective region of convergence. More >

  • Open Access

    ARTICLE

    Inverse Green Element Solutions of Heat Conduction Using the Time-Dependent and Logarithmic Fundamental Solutions

    Akpofure E. Taigbenu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp. 271-289, 2014, DOI:10.3970/cmes.2014.102.271

    Abstract The solutions to inverse heat conduction problems (IHCPs) are provided in this paper by the Green element method (GEM), incorporating the logarithmic fundamental solution of the Laplace operator (Formulation 1) and the timedependent fundamental solution of the diffusion differential operator (Formulation 2). The IHCPs addressed relate to transient problems of the recovery of the temperature, heat flux and heat source in 2-D homogeneous domains. For each formulation, the global coefficient matrix is over-determined and ill-conditioned, requiring a solution strategy that involves the least square method with matrix decomposition by the singular value decomposition (SVD) method, and regularization by the Tikhonov… More >

  • Open Access

    ARTICLE

    Investigation of Squeezing Unsteady Nanofluid Flow Using the Modified Decomposition Method

    Lei Lu1,2, Li-Hua Liu3,4, Xiao-Xiao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.1, pp. 1-15, 2014, DOI:10.3970/cmes.2014.101.001

    Abstract In this paper, we use the modified decomposition method (MDM) to solve the unsteady flow of a nanofluid squeezing between two parallel equations. Copper as nanoparticle with water as its base fluid has considered. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell- Garnetts (MG) and Brinkman models, respectively. The effects of the squeeze number, the nanofluid volume fraction, Eckert number, δ on Nusselt number and the Prandtl number are investigated. The figures and tables clearly show high accuracy of the method to solve the unsteady flow. More >

  • Open Access

    ARTICLE

    Solving the Lane–Emden–Fowler Type Equations of Higher Orders by the Adomian Decomposition Method

    Abdul-Majid Wazwaz1, R,olph Rach2, Lazhar Bougoffa3, Jun-Sheng Duan4, 5

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 507-529, 2014, DOI:10.3970/cmes.2014.100.507

    Abstract In this paper, we construct the Lane–Emden–Fowler type equations of higher orders. We study the linear and the nonlinear Lane–Emden–Fowler type equations of the third and fourth orders, where other forms can be treated in a similar manner. We use the systematic Adomian decomposition method to handle these types of equations with specified initial conditions. We confirm that the Adomian decomposition method provides an efficient algorithm for exact and approximate analytic solutions of these equations. We corroborate this study by investigating several numerical examples that emphasize initial value problems. More >

  • Open Access

    ARTICLE

    Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method

    Lei Lu1,2,3, Jun-Sheng Duan2, Long-Zhen Fan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 463-475, 2014, DOI:10.3970/cmes.2014.100.463

    Abstract In this paper, the modified decomposition method (MDM) for solving the nonlinear two-dimensional viscous flow equations is presented. This study investigates the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions. We first transform the original two-dimensional viscous flow problem into an equivalent fourth-order boundary value problem (BVP), then solve the problem by the MDM. The figures and tables clearly show high accuracy of the method to solve two-dimensional viscous flow. More >

  • Open Access

    ARTICLE

    Parallel Control-volume Method Based on Compact Local Integrated RBFs for the Solution of Fluid Flow Problems

    N. Pham-Sy1, C.-D. Tran1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 363-397, 2014, DOI:10.3970/cmes.2014.100.363

    Abstract In this paper, a high performance computing method based on the Integrated Radial Basis Function (IRBF), Control Volume (CV) and Domain Decomposition technique for solving Partial Differential Equations is presented. The goal is to develop an efficient parallel algorithm based on the Compact Local IRBF method using the CV approach, especially for problems with non-rectangular domain. The results showed that the goal is achieved as the computational efficiency is quite significant. For the case of square lid driven cavity problem with Renoylds number 100, super-linear speed-up is also achieved. The parallel algorithm is implemented in the Matlab environment using Parallel… More >

  • Open Access

    ARTICLE

    A Universal Model-Independent Algorithm for Structural Damage Localization

    Q.W. Yang1,2, S.G. Du1, C.F. Liang1, L.J. Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.3, pp. 223-248, 2014, DOI:10.3970/cmes.2014.100.223

    Abstract Although the model-independent damage localization algorithms have been extensively developed in recent years, the theoretical relationship between these damage indicators and the definition of damage is not clear. Moreover the existing damage localization methods are usually dependent on the boundary conditions and the type of structure. In view of this, the paper presents a universal model-independent algorithm for structural damage localization. To this end, the explicit relationship between the damage and damage-induced displacement variation is firstly clarified by using the well-known Sherman-Morrison and Woodbury formulas. A theorem is then presented for structural damage localization. According to the theorem, the universal… More >

  • Open Access

    ARTICLE

    A New Modified Adomian Decomposition Method for Higher-Order Nonlinear Dynamical Systems

    Jun-Sheng Duan1,2, Randolph Rach3, Abdul-Majid Wazwaz4

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.1, pp. 77-118, 2013, DOI:10.3970/cmes.2013.094.077

    Abstract In this paper, we propose a new modification of the Adomian decomposition method for solution of higher-order nonlinear initial value problems with variable system coefficients and solutions of systems of coupled nonlinear initial value problems. We consider various algorithms for the Adomian decomposition series and the series of Adomian polynomials to calculate the solutions of canonical first- and second-order nonlinear initial value problems in order to derive a systematic algorithm for the general case of higher-order nonlinear initial value problems and systems of coupled higher-order nonlinear initial value problems. Our new modified recursion scheme is designed to decelerate the Adomian… More >

  • Open Access

    ARTICLE

    A Simple Proper Orthogonal Decomposition Method for von Karman Plate undergoing Supersonic Flow

    Dan Xie1, Min Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.5, pp. 377-409, 2013, DOI:10.3970/cmes.2013.093.377

    Abstract We apply a simple proper orthogonal decomposition (POD) method to compute the nonlinear oscillations of a degenerate two-dimensional fluttering plate undergoing supersonic flow. First, the von Karman’s large deflection theory and quasi-steady aerodynamic theory are employed in constructing the governing equations of the simply supported plate. Then, the governing equations are solved by both the Galerkin method and the POD method. The Galerkin method is accurate but sometimes computationally expensive, since the number of degrees of freedom (dofs) required is relatively large provided that nonlinearity is strong. The POD method can be used to capture the complex dynamics of a… More >

Displaying 121-130 on page 13 of 164. Per Page