Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (164)
  • Open Access

    ARTICLE

    New Interpretation to Variational Iteration Method: Convolution Iteration Method Based on Duhamel's Principle for Dynamic System Analysis

    Yunhua Li1,2, Yunze Li3, Chieh-Li Chen4, Cha’o-Kuang Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 1-14, 2010, DOI:10.3970/cmes.2010.058.001

    Abstract Addressing the identification problem of the general Lagrange multiplier in the He's variational iteration method, this paper proposes a new kind of method based on Duhamel's principle for the dynamic system response analysis. In this method, we have constructed an analytical iteration formula in terms of the convolution for the residual error at the nth iteration, and have given a new interpretation to He's variational iteration method. The analysis illustrates that the computational result of this method is equal to that of He's variational iteration method on the assumption of considering the impulse response of the linear parts, or equal… More >

  • Open Access

    ARTICLE

    A Relocalization Technique for the Multiscale Computation of Delamination in Composite Structures

    O. Allix1, P. Kerfriden1, P. Gosselet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.3, pp. 271-292, 2010, DOI:10.3970/cmes.2010.055.271

    Abstract We present numerical enhancements of a multiscale domain decomposition strategy based on a LaTIn solver and dedicated to the computation of the debounding in laminated composites. We show that the classical scale separation is irrelevant in the process zones, which results in a drop in the convergence rate of the strategy. We show that performing nonlinear subresolutions in the vicinity of the front of the crack at each prediction stage of the iterative solver permits to restore the effectiveness of the method. More >

  • Open Access

    ARTICLE

    Solution Methods for Nonsymmetric Linear Systems with Large off-Diagonal Elements and Discontinuous Coefficients

    Dan Gordon1, Rachel Gordon2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.053.023

    Abstract Linear systems with very large off-diagonal elements and discontinuous coefficients (LODC systems) arise in some modeling cases, such as those involving heterogeneous media. Such problems are usually solved by domain decomposition methods, but these can be difficult to implement on unstructured grids or when the boundaries between subdomains have a complicated geometry. Gordon and Gordon have shown that Björck and Elfving's (sequential) CGMN algorithm and their own block-parallel CARP-CG are very robust and efficient on strongly convection dominated cases (but without discontinuous coefficients). They have also shown that scaling the equations by dividing each equation by the L2-norm of its… More >

  • Open Access

    ARTICLE

    Wavelet Based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Shekarchi2, Mohammad Rahimian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 161-190, 2009, DOI:10.3970/cmes.2009.050.161

    Abstract We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs over irregularly shaped domains. For a problem defined over Ω∈ℜd, the boundary of an irregularly shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside function along the normal direction and a piecewise continuous tangential curve. The link between the original wavelet based adaptive method presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the generalized one is given through the use of simple Heaviside masking procedure. In addition… More >

  • Open Access

    ARTICLE

    The Inverse Problem of Determining Heat Transfer Coefficients by the Meshless Local Petrov-Galerkin Method

    J. Sladek1, V. Sladek1, P.H. Wen2, Y.C. Hon3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.2, pp. 191-218, 2009, DOI:10.3970/cmes.2009.048.191

    Abstract The meshless local Petrov-Galerkin (MLPG) method is used to solve the inverse heat conduction problem of predicting the distribution of the heat transfer coefficient on the boundary of 2-D and axisymmetric bodies. Using this method, nodes are randomly distributed over the numerical solution domain, and surrounding each of these nodes, a circular sub-domain is introduced. By choosing a unit step function as the test function, the local integral equations (LIE) on the boundaries of these sub-domains are derived. To eliminate the time variation in the governing equation, the Laplace transform technique is applied. The local integral equations are nonsingular and… More >

  • Open Access

    ARTICLE

    The Particular Solutions of Chebyshev Polynomials for Reissner Plates under Arbitrary Loadings

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.3, pp. 249-272, 2009, DOI:10.3970/cmes.2009.045.249

    Abstract Analytical particular solutions of Chebyshev polynomials are obtained for problems of Reissner plates under arbitrary loadings, which are governed by three coupled second-ordered partial differential equation (PDEs). Our solutions can be written explicitly in terms of monomials. By using these formulas, we can obtain the approximate particular solution when the arbitrary loadings have been represented by a truncated series of Chebyshev polynomials. In the derivations of particular solutions, the three coupled second-ordered PDE are first transformed into a single six-ordered PDE through the Hörmander operator decomposition technique. Then the particular solutions of this six-ordered PDE can be found in the… More >

  • Open Access

    ARTICLE

    A Developed New Algorithm for Evaluating Adomian Polynomials

    M. Azreg-Aïnou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 1-18, 2009, DOI:10.3970/cmes.2009.042.001

    Abstract Adomian polynomials (AP's) are expressed in terms of new objects called reduced polynomials (RP's). These new objects, which carry two subscripts, are independent of the form of the nonlinear operator. Apart from the well-known two properties of AP's, curiously enough no further properties are discussed in the literature. We derive and discuss in full detail the properties of the RP's and AP's. We focus on the case where the nonlinear operator depends on one variable and construct the most general analytical expressions of the RP's for small values of the difference of their subscripts. It is shown that each RP… More >

  • Open Access

    ARTICLE

    Effects of the local structure on a cracked periodically distributed composite

    M. Patrício1, R. Mattheij1, G. de With2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.1, pp. 69-94, 2009, DOI:10.3970/cmes.2009.041.069

    Abstract In this paper the effect of the local structure of a highly heterogeneous composite material on the parameters that characterise crack propagation is analysed. The evaluation of stress intensity factors is discussed. A hybrid approach based on domain decomposition and homogenisation methods is employed to obtain accurate solutions with reduced computational complexity. More >

  • Open Access

    ARTICLE

    Large-Scale Full Wave Analysis of Electromagnetic Field by Hierarchical Domain Decomposition Method

    A. Takei1, S. Yoshimura1, H. Kanayama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.1, pp. 63-82, 2009, DOI:10.3970/cmes.2009.040.063

    Abstract This paper describes a large-scale finite element analysis (FEA) for a high-frequency electromagnetic field of Maxwell equations including the displacement current. A stationary Helmholtz equation for the high-frequency electromagnetic field analysis is solved by considering an electric field and an electric scalar potential as unknown functions. To speed up the analysis, the hierarchical domain decomposition method (HDDM) is employed as a parallel solver. In this study, the Parent-Only type (Parallel processor mode: P-mode) of the HDDM is employed. In the P-mode, Parent processors perform the entire FEA. In this mode, all CPUs can be used without idling in an environment… More >

  • Open Access

    ARTICLE

    A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Shekarchi2, Mohammad Rahimian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.3, pp. 263-284, 2008, DOI:10.3970/cmes.2008.038.263

    Abstract We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs. Multiresolution wavelet analysis (MRWA) provides a firm mathematical foundation by projecting the solution of PDE onto a nested sequence of approximation spaces. The wavelet coefficients then were used as an estimation of the sensible regions for node adaptation. The proposed adaptation scheme requires negligible calculation time due to the existence of the fast Discrete Wavelet Transform (DWT). Certain aspects of the proposed adaptive scheme are discussed through numerical examples. It has been shown that the proposed adaptive scheme can detect… More >

Displaying 141-150 on page 15 of 164. Per Page