Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,417)
  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI: 10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this study. The results focus on… More >

  • Open Access

    ARTICLE

    A Review on Deep Learning Approaches to Image Classification and Object Segmentation

    Hao Wu1, Qi Liu2, 3, *, Xiaodong Liu4

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 575-597, 2019, DOI:10.32604/cmc.2019.03595

    Abstract Deep learning technology has brought great impetus to artificial intelligence, especially in the fields of image processing, pattern and object recognition in recent years. Present proposed artificial neural networks and optimization skills have effectively achieved large-scale deep learnt neural networks showing better performance with deeper depth and wider width of networks. With the efforts in the present deep learning approaches, factors, e.g., network structures, training methods and training data sets are playing critical roles in improving the performance of networks. In this paper, deep learning models in recent years are summarized and compared with detailed discussion of several typical networks… More >

  • Open Access

    ARTICLE

    Rigid Medical Image Registration Using Learning-Based Interest Points and Features

    Maoyang Zou1,2, Jinrong Hu2, Huan Zhang2, Xi Wu2, Jia He2, Zhijie Xu3, Yong Zhong1,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 511-525, 2019, DOI:10.32604/cmc.2019.05912

    Abstract For image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy and interventional radiology, one of the important techniques is medical image registration. In our study, we propose a learning-based approach named “FIP-CNNF” for rigid registration of medical image. Firstly, the pixel-level interest points are computed by the full convolution network (FCN) with self-supervise. Secondly, feature detection, descriptor and matching are trained by convolution neural network (CNN). Thirdly, random sample consensus (Ransac) is used to filter outliers, and the transformation parameters are found with the most inliers by iteratively fitting transforms. In addition, we propose “TrFIP-CNNF” which uses transfer learning and fine-tuning… More >

  • Open Access

    ARTICLE

    A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate

    Hongwei Guo3, Xiaoying Zhuang3,4,5, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 433-456, 2019, DOI:10.32604/cmc.2019.06660

    Abstract In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions are minimised at those collocation… More >

  • Open Access

    ARTICLE

    Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems

    Cosmin Anitescu1, Elena Atroshchenko2, Naif Alajlan3, Timon Rabczuk3,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 345-359, 2019, DOI:10.32604/cmc.2019.06641

    Abstract We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy. In this procedure, a coarse grid of training points is used at the initial training stages, while more points are added at later stages based on the value of the residual at a larger set of evaluation points. This method increases the robustness of the neural network approximation and can result in significant computational savings, particularly when the solution is non-smooth. Numerical results are presented for benchmark problems for scalar-valued PDEs, namely Poisson and Helmholtz equations, as well as for an inverse… More >

  • Open Access

    ARTICLE

    Image Augmentation-Based Food Recognition with Convolutional Neural Networks

    Lili Pan1, Jiaohua Qin1,*, Hao Chen2, Xuyu Xiang1, Cong Li1, Ran Chen1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 297-313, 2019, DOI:10.32604/cmc.2019.04097

    Abstract Image retrieval for food ingredients is important work, tremendously tiring, uninteresting, and expensive. Computer vision systems have extraordinary advancements in image retrieval with CNNs skills. But it is not feasible for small-size food datasets using convolutional neural networks directly. In this study, a novel image retrieval approach is presented for small and medium-scale food datasets, which both augments images utilizing image transformation techniques to enlarge the size of datasets, and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies. First, typical image transformation techniques are used to augment food images. Then transfer learning technology based on deep… More >

  • Open Access

    ARTICLE

    A Hierarchy Distributed-Agents Model for Network Risk Evaluation Based on Deep Learning

    Jin Yang1, Tao Li1, Gang Liang1,*, Wenbo He2, Yue Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 1-23, 2019, DOI:10.32604/cmes.2019.04727

    Abstract Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic, which is especially relevant in Network Intrusion Detection. In this paper, as enlightened by the theory of Deep Learning Neural Networks, Hierarchy Distributed-Agents Model for Network Risk Evaluation, a newly developed model, is proposed. The architecture taken on by the distributed-agents model are given, as well as the approach of analyzing network intrusion detection using Deep Learning, the mechanism of sharing hyper-parameters to improve the efficiency of learning is presented, and the hierarchical evaluative framework for Network Risk Evaluation of the proposed… More >

  • Open Access

    ARTICLE

    A Survey of Image Information Hiding Algorithms Based on Deep Learning

    Ruohan Meng1,2,*, Qi Cui1,2, Chengsheng Yuan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 425-454, 2018, DOI:10.31614/cmes.2018.04765

    Abstract With the development of data science and technology, information security has been further concerned. In order to solve privacy problems such as personal privacy being peeped and copyright being infringed, information hiding algorithms has been developed. Image information hiding is to make use of the redundancy of the cover image to hide secret information in it. Ensuring that the stego image cannot be distinguished from the cover image, and sending secret information to receiver through the transmission of the stego image. At present, the model based on deep learning is also widely applied to the field of information hiding. This… More >

  • Open Access

    ARTICLE

    Failure Prediction, Lead Time Estimation and Health Degree Assessment for Hard Disk Drives Using Voting Based Decision Trees

    Kamaljit Kaur1, *, Kuljit Kaur2

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 913-946, 2019, DOI:10.32604/cmc.2019.07675

    Abstract Hard Disk drives (HDDs) are an essential component of cloud computing and big data, responsible for storing humongous volumes of collected data. However, HDD failures pose a huge challenge to big data servers and cloud service providers. Every year, about 10% disk drives used in servers crash at least twice, lead to data loss, recovery cost and lower reliability. Recently, the researchers have used SMART parameters to develop various prediction techniques, however, these methods need to be improved for reliability and real-world usage due to the following factors: they lack the ability to consider the gradual change/deterioration of HDDs; they… More >

  • Open Access

    ARTICLE

    A Novel Scene Text Recognition Method Based on Deep Learning

    Maosen Wang1, Shaozhang Niu1,*, Zhenguang Gao2

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 781-794, 2019, DOI:10.32604/cmc.2019.05595

    Abstract Scene text recognition is one of the most important techniques in pattern recognition and machine intelligence due to its numerous practical applications. Scene text recognition is also a sequence model task. Recurrent neural network (RNN) is commonly regarded as the default starting point for sequential models. Due to the non-parallel prediction and the gradient disappearance problem, the performance of the RNN is difficult to improve substantially. In this paper, a new TRDD network architecture which base on dilated convolution and residual block is proposed, using Convolutional Neural Networks (CNN) instead of RNN realizes the recognition task of sequence texts. Our… More >

Displaying 1401-1410 on page 141 of 1417. Per Page