Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Performance of Deep Learning Techniques in Leaf Disease Detection

    Robertas Damasevicius1,*, Faheem Mahmood2, Yaseen Zaman3, Sobia Dastgeer2, Sajid Khan2

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1349-1366, 2024, DOI:10.32604/csse.2024.050359 - 13 September 2024

    Abstract Plant diseases must be identified as soon as possible since they have an impact on the growth of the corresponding species. Consequently, the identification of leaf diseases is essential in this field of agriculture. Diseases brought on by bacteria, viruses, and fungi are a significant factor in reduced crop yields. Numerous machine learning models have been applied in the identification of plant diseases, however, with the recent developments in deep learning, this field of study seems to hold huge potential for improved accuracy. This study presents an effective method that uses image processing and deep… More >

  • Open Access

    ARTICLE

    Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment

    Aljuaid Turkea Ayedh M1,2,*, Ainuddin Wahid Abdul Wahab1,*, Mohd Yamani Idna Idris1,3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4663-4686, 2024, DOI:10.32604/cmc.2024.055287 - 12 September 2024

    Abstract Organizations are adopting the Bring Your Own Device (BYOD) concept to enhance productivity and reduce expenses. However, this trend introduces security challenges, such as unauthorized access. Traditional access control systems, such as Attribute-Based Access Control (ABAC) and Role-Based Access Control (RBAC), are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources. This paper proposes a method for enforcing access decisions that is adaptable and dynamic, based on multilayer hybrid deep learning techniques, particularly the Tabular Deep Neural Network TabularDNN method. This technique transforms… More >

  • Open Access

    REVIEW

    Social Media-Based Surveillance Systems for Health Informatics Using Machine and Deep Learning Techniques: A Comprehensive Review and Open Challenges

    Samina Amin1, Muhammad Ali Zeb1, Hani Alshahrani2,*, Mohammed Hamdi2, Mohammad Alsulami2, Asadullah Shaikh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1167-1202, 2024, DOI:10.32604/cmes.2023.043921 - 29 January 2024

    Abstract Social media (SM) based surveillance systems, combined with machine learning (ML) and deep learning (DL) techniques, have shown potential for early detection of epidemic outbreaks. This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance. Since, every year, a large amount of data related to epidemic outbreaks, particularly Twitter data is generated by SM. This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM, along with the ML and DL techniques that… More >

  • Open Access

    ARTICLE

    YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security

    Fares Alharbi1, Reem Alshahrani2, Mohammed Zakariah3,*, Amjad Aldweesh1, Abdulrahman Abdullah Alghamdi1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3697-3722, 2023, DOI:10.32604/cmc.2023.040086 - 26 December 2023

    Abstract Privacy and trust are significant issues in intelligent transportation systems (ITS). Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels, optical fiber, and blockchain technology. The Internet of Things (IoT) is a network of connected, interconnected gadgets. Privacy issues occasionally arise due to the amount of data generated. However, they have been primarily addressed by blockchain and smart contract technology. While there are still security issues with smart contracts, primarily due to the complexity of writing… More >

  • Open Access

    ARTICLE

    Classification of Brain Tumors Using Hybrid Feature Extraction Based on Modified Deep Learning Techniques

    Tawfeeq Shawly1, Ahmed Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 425-443, 2023, DOI:10.32604/cmc.2023.040561 - 31 October 2023

    Abstract According to the World Health Organization (WHO), Brain Tumors (BrT) have a high rate of mortality across the world. The mortality rate, however, decreases with early diagnosis. Brain images, Computed Tomography (CT) scans, Magnetic Resonance Imaging scans (MRIs), segmentation, analysis, and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages. For physicians, diagnosis can be challenging and time-consuming, especially for those with little expertise. As technology advances, Artificial Intelligence (AI) has been used in various domains as a diagnostic tool and offers promising outcomes. Deep-learning techniques are… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Model Based on Machine and Deep Learning Techniques for the Classification of Microalgae

    Volkan Kaya1, İsmail Akgül1, Özge Zencir Tanır2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2519-2534, 2023, DOI:10.32604/phyton.2023.029811 - 28 July 2023

    Abstract Classification and monitoring of microalgae species in aquatic ecosystems are important for understanding population dynamics. However, manual classification of algae is a time-consuming method and requires a lot of effort with expertise due to the large number of families and genera in its classification. The recognition of microalgae species has become an increasingly important research area in image recognition in recent years. In this study, machine learning and deep learning methods were proposed to classify images of 12 different microalgae species in order to successfully classify algae cells. 8 Different novel models (MobileNetV3Small-Lr, MobileNetV3SmallRf, MobileNetV3Small-Xg,… More >

  • Open Access

    ARTICLE

    Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques

    Abdus Saboor1,4, Arif Hussain2, Bless Lord Y. Agbley3, Amin ul Haq3,*, Jian Ping Li3, Rajesh Kumar1,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1325-1344, 2023, DOI:10.32604/iasc.2023.038849 - 21 June 2023

    Abstract Stock market forecasting has drawn interest from both economists and computer scientists as a classic yet difficult topic. With the objective of constructing an effective prediction model, both linear and machine learning tools have been investigated for the past couple of decades. In recent years, recurrent neural networks (RNNs) have been observed to perform well on tasks involving sequence-based data in many research domains. With this motivation, we investigated the performance of long-short term memory (LSTM) and gated recurrent units (GRU) and their combination with the attention mechanism; LSTM + Attention, GRU + Attention, and More >

  • Open Access

    ARTICLE

    Text-to-Sketch Synthesis via Adversarial Network

    Jason Elroy Martis1, Sannidhan Manjaya Shetty2,*, Manas Ranjan Pradhan3, Usha Desai4, Biswaranjan Acharya5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 915-938, 2023, DOI:10.32604/cmc.2023.038847 - 08 June 2023

    Abstract In the past, sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes. However, relying on eyewitness observations can lead to discrepancies in the depictions of the sketch, depending on the experience and skills of the sketch artist. With the emergence of modern technologies such as Generative Adversarial Networks (GANs), generating images using verbal and textual cues is now possible, resulting in more accurate sketch depictions. In this study, we propose an adversarial network that generates human facial sketches using such cues provided More >

  • Open Access

    ARTICLE

    Automatic Diagnosis of Polycystic Ovarian Syndrome Using Wrapper Methodology with Deep Learning Techniques

    Mohamed Abouhawwash1,2, S. Sridevi3, Suma Christal Mary Sundararajan4, Rohit Pachlor5, Faten Khalid Karim6, Doaa Sami Khafaga6,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 239-253, 2023, DOI:10.32604/csse.2023.037812 - 26 May 2023

    Abstract One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome (PCOS). Consequently, timely screening of polycystic ovarian syndrome can help in the process of recovery. Finding a method to aid doctors in this procedure was crucial due to the difficulties in detecting this condition. This research aimed to determine whether it is possible to optimize the detection of PCOS utilizing Deep Learning algorithms and methodologies. Additionally, feature selection methods that produce the most important subset of features can speed up calculation and enhance… More >

  • Open Access

    ARTICLE

    Early Detection Glaucoma and Stargardt’s Disease Using Deep Learning Techniques

    Somasundaram Devaraj*, Senthil Kumar Arunachalam

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1283-1299, 2023, DOI:10.32604/iasc.2023.033200 - 05 January 2023

    Abstract Retinal fundus images are used to discover many diseases. Several Machine learning algorithms are designed to identify the Glaucoma disease. But the accuracy and time consumption performance were not improved. To address this problem Max Pool Convolution Neural Kuan Filtered Tobit Regressive Segmentation based Radial Basis Image Classifier (MPCNKFTRS-RBIC) Model is used for detecting the Glaucoma and Stargardt’s disease by early period using higher accuracy and minimal time. In MPCNKFTRS-RBIC Model, the retinal fundus image is considered as an input which is preprocessed in hidden layer 1 using weighted adaptive Kuan filter. Then, preprocessed retinal… More >

Displaying 1-10 on page 1 of 27. Per Page