Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    PROCEEDINGS

    A Deep-Learning Based Model with Intra- and Inter-Well Constraints for Intelligent Identification of Stratigraphic Layers

    Jinghua Yang1, Bin Gong1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-2, 2025, DOI: 10.32604/icces.2025.011889

    Abstract Geological stratification interpretation divides geological strata based on acquired well-logging data, providing comparative analysis results for strata and structures. This process serves as a fundamental framework for subsequent drilling and development design plans, making it a crucial step in oil exploration and development process. Traditional geological stratification interpretation methods are based primarily on geological, logging, and experimental data, with manual determination of strata boundaries to obtain interpretation results. However, manual interpretation is characterized by strong subjectivity and reliance on experience, which may compromise the quality and consistency of the results. To eliminate the dependency on… More >

  • Open Access

    ARTICLE

    A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain

    Lord Amoah1,2, Jinwei Wang1,2,3,*, Bernard-Marie Onzo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1635-1660, 2025, DOI:10.32604/cmes.2025.063992 - 30 May 2025

    Abstract Medical image segmentation, i.e., labeling structures of interest in medical images, is crucial for disease diagnosis and treatment in radiology. In reversible data hiding in medical images (RDHMI), segmentation consists of only two regions: the focal and nonfocal regions. The focal region mainly contains information for diagnosis, while the nonfocal region serves as the monochrome background. The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images, and manual segmentation is time-consuming, poorly reproducible, and operator-dependent. Implementing state-of-the-art deep learning (DL) models will facilitate key benefits, but the lack of domain-specific labels… More >

  • Open Access

    ARTICLE

    Application of Deep-Learning Potential in Simulating the Structural and Physical Characteristics of Platinum

    Keyuan Chen1, Xingkao Zhang1, Li Ma1, Jueyi Ye1, Qi Qiu1, Haoxiang Zhang1, Ju Rong1,*, Yudong Sui1,*, Xiaohua Yu1,2, Jing Feng1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 685-700, 2025, DOI:10.32604/cmc.2025.060713 - 26 March 2025

    Abstract The deep potential (DP) is an innovative approach based on deep learning that uses ab initio calculation data derived from density functional theory (DFT), to create high-accuracy potential functions for various materials. Platinum (Pt) is a rare metal with significant potential in energy and catalytic applications, However, there are challenges in accurately capturing its physical properties due to high experimental costs and the limitations of traditional empirical methods. This study employs deep learning methods to construct high-precision potential models for single-element systems of Pt and validates their predictive performance in complex environments. The newly developed DP… More >

  • Open Access

    ARTICLE

    Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with Explainable AI

    Sannasi Chakravarthy1, Bharanidharan Nagarajan2, Surbhi Bhatia Khan3,7,*, Vinoth Kumar Venkatesan2, Mahesh Thyluru Ramakrishna4, Ahlam Al Musharraf5, Khursheed Aurungzeb6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 5029-5045, 2024, DOI:10.32604/cmc.2024.052531 - 12 September 2024

    Abstract Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-B0 having a Spatial Attention Layer with More >

  • Open Access

    ARTICLE

    Track Defects Recognition Based on Axle-Box Vibration Acceleration and Deep-Learning Techniques

    Xianxian Yin1, Shimin Yin1, Yiming Bu2, Xiukun Wei3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 623-640, 2024, DOI:10.32604/sdhm.2024.050195 - 19 July 2024

    Abstract As an important component of load transfer, various fatigue damages occur in the track as the rail service life and train traffic increase gradually, such as rail corrugation, rail joint damage, uneven thermite welds, rail squats fastener defects, etc. Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit. In this paper, an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network, and the coexistence of the above-mentioned typical track defects in the track system… More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586 - 20 June 2024

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset

    Mohammed Zakariah1, Salman A. AlQahtani2,*, Abdulaziz M. Alawwad1, Abdullilah A. Alotaibi3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4025-4054, 2023, DOI:10.32604/cmc.2023.043752 - 26 December 2023

    Abstract Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic. By consuming time and resources, intrusive traffic hampers the efficient operation of network infrastructure. An effective strategy for preventing, detecting, and mitigating intrusion incidents will increase productivity. A crucial element of secure network traffic is Intrusion Detection System (IDS). An IDS system may be host-based or network-based to monitor intrusive network activity. Finding unusual internet traffic has become a severe security risk for intelligent devices. These systems are negatively impacted by several attacks, which are… More >

  • Open Access

    ARTICLE

    Abnormal Behavior Detection Using Deep-Learning-Based Video Data Structuring

    Min-Jeong Kim1, Byeong-Uk Jeon1, Hyun Yoo2, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2371-2386, 2023, DOI:10.32604/iasc.2023.040310 - 21 June 2023

    Abstract With the increasing number of digital devices generating a vast amount of video data, the recognition of abnormal image patterns has become more important. Accordingly, it is necessary to develop a method that achieves this task using object and behavior information within video data. Existing methods for detecting abnormal behaviors only focus on simple motions, therefore they cannot determine the overall behavior occurring throughout a video. In this study, an abnormal behavior detection method that uses deep learning (DL)-based video-data structuring is proposed. Objects and motions are first extracted from continuous images by combining existing More >

  • Open Access

    ARTICLE

    Partially Deep-Learning Encryption Technique

    Hamdy M. Mousa*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4277-4291, 2023, DOI:10.32604/cmc.2023.034593 - 31 October 2022

    Abstract The biggest problem facing the world is information security in the digital era. Information protection and integrity are hot topics at all times, so many techniques have been introduced to transmit and store data securely. The increase in computing power is increasing the number of security breaches and attacks at a higher rate than before on average. Thus, a number of existing security systems are at risk of hacking. This paper proposes an encryption technique called Partial Deep-Learning Encryption Technique (PD-LET) to achieve data security. PD-LET includes several stages for encoding and decoding digital data.… More >

Displaying 1-10 on page 1 of 21. Per Page