Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (219)
  • Open Access

    ARTICLE

    Local Defect Correction for the Boundary Element Method

    G. Kakuba1, R.M.M. Mattheij2, M.J.H. Anthonissen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 127-136, 2006, DOI:10.3970/cmes.2006.015.127

    Abstract This paper presents an efficient way to implement the Boundary Element Method (BEM) to capture high activity regions in a boundary value problem. In boundary regions where accuracy is critical, like in adaptive surface meshes, the method of choice is Local Defect Correction (LDC). We formulate the method and demonstrate its applicability and reliability by means of an example. Numerical results show that LDC and BEM together provide accurate solutions with less computational requirements given that BEM systems usually consist of dense matrices. More >

  • Open Access

    ARTICLE

    Meshfree Solution of Q-tensor Equations of Nematostatics Using the MLPG Method

    Radek Pecher1, Steve Elston, Peter Raynes

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.2, pp. 91-102, 2006, DOI:10.3970/cmes.2006.013.091

    Abstract Meshfree techniques for solving partial differential equations in physics and engineering are a powerful new alternative to the traditional mesh-based techniques, such as the finite difference method or the finite element method. The elimination of the domain mesh enables, among other benefits, more efficient solutions of nonlinear and multi-scale problems. One particular example of these kinds of problems is a Q-tensor based model of nematic liquid crystals involving topological defects.
    This paper presents the first application of the meshless local Petrov-Galerkin method to solving the Q-tensor equations of nematostatics. The theoretical part introduces the Landau -- de Gennes free-energy… More >

  • Open Access

    ARTICLE

    Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects

    H.F. Zhan, Y.T. Gu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.1, pp. 23-56, 2011, DOI:10.3970/cmes.2011.080.023

    Abstract Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of… More >

  • Open Access

    ARTICLE

    A Micromechanics Analysis of Nanoscale Graphite Platelet-Reinforced Epoxy Using Defect Green's Function

    B. Yang1,2, S.-C. Wong3, S. Qu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 81-94, 2008, DOI:10.3970/cmes.2008.024.081

    Abstract In the modeling of overall property of composites, the effect of particle interaction has been either numerically taken into account within a (representative) volume element of a small number of particles or neglected/ignored in order for efficient solution to a large system of particles. In this study, we apply the point-defect Green's function (GF) to take into account the effect of particle interaction. It is applicable to small volume fractions of particles (within 10 %). The high efficiency of the method enables a simulation of a large system of particles with generally elastic anisotropy, arbitrary shape and composition, and arbitrary… More >

  • Open Access

    ARTICLE

    Computer Simulation of Fundamental Behaviors of Point Defects, Clusters and Interaction with Dislocations in Fe and Ni

    E. Kuramoto, K. Ohsawa, T. Tsutsumi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 193-200, 2002, DOI:10.3970/cmes.2002.003.193

    Abstract In order to investigate the interaction of point defects with a dislocation, an interstitial cluster or a SFT (stacking fault tetrahedron), computer simulation has been carried out in model Fe and Ni crystals. The capture zone (the region where the interaction energy is larger than kT) was determined for various interactions. Calculated capture zone for T =500°C for SIAs (crowdion and dumbbell) around a straight edge dislocation is larger than that for a vacancy in both Fe and Ni. Capture zones for Ni are larger than those for Fe, suggesting that Ni (fcc) has a larger dislocation bias factor than… More >

  • Open Access

    ARTICLE

    Online Magnetic Flux Leakage Detection System for Sucker Rod Defects Based on LabVIEW Programming

    Ou Zhang1,*, Xueye Wei1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 529-544, 2019, DOI:10.32604/cmc.2019.04075

    Abstract Aiming at the detection of the sucker rod defects, a real-time detection system is designed using the non-destructive testing technology of magnetic flux leakage (MFL). An MFL measurement system consists of many parts, and this study focuses on the signal acquisition and processing system. First of all, this paper introduces the hardware part of the acquisition system in detail, including the selection of the Hall-effect sensor, the design of the signal conditioning circuit, and the working process of the single chip computer (SCM) control serial port. Based on LabVIEW, a graphical programming software, the software part of the acquisition system… More >

  • Open Access

    ARTICLE

    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2, J. L. Gabayno2,4

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 125-140, 2014, DOI:10.3970/cmc.2014.042.125

    Abstract Automated optical inspection systems installed in production lines help ensure high throughput by speeding up inspection of defects that are otherwise difficult to detect using the naked eye. However, depending on the size and surface properties of the products such as micro-cracks on touchscreen panels glass cover, the detection speed and accuracy are limited by the imaging module and lighting technique. Therefore the current inspection methods are still delegated to a few qualified personnel whose limited capacity has been a huge tradeoff for high volume production. In this study, an automated optical technology for in-line surface defect inspection is developed… More >

  • Open Access

    ARTICLE

    The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes

    Hsien-Chie Cheng1, Yu-Chen Hsu2, Wen-Hwa Chen2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 127-146, 2009, DOI:10.3970/cmc.2009.011.127

    Abstract Due to the limitation of fabrication technologies nowadays, structural or atomistic defects are often perceived in carbon nanotubes (CNTs) during the manufacturing process. The main goal of the study aims at providing a systematic investigation of the effects of atomistic defects on the nanomechanical properties and fracture behaviors of single-walled CNTs (SWCNTs) using molecular dynamics (MD) simulation. Furthermore, the correlation between local stress distribution and fracture evolution is studied. Key parameters and factors under investigation include the number, type (namely the vacancy and Stone-Wales defects), location and distribution of defects. Results show that the nanomechanical properties of the CNTs, such… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

Displaying 211-220 on page 22 of 219. Per Page