Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions

    Guowei Feng1, Qing Li2,3, Yang Wang1,*, Nan Lin4, Sixi Zha1, Hang Dong1, Ping Chen5, Minjun Zheng6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2139-2161, 2024, DOI:10.32604/fdmp.2024.053941 - 23 August 2024

    Abstract High-density polyethylene (HDPE) pipes have gradually become the first choice for gas networks because of their excellent characteristics. As the use of pipes increases, there will unavoidably be a significant amount of waste generated when the pipes cease their operation life, which, if improperly handled, might result in major environmental contamination issues. In this study, the thermal degradation of polyethylene materials is simulated for different pressures (10, 50, 100, and 150 MPa) and temperatures (2300, 2500, 2700, and 2900 K) in the framework of Reactive Force Field (ReaxFF) molecular dynamics simulation. The main gas products,… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of CMC-Wrapped ZnONPs at Different Calcination Temperatures for Photocatalytic Degradation of Methylene Blue Dye under Sunlight

    Abhishek Kumar Patel, Ashlesha P. Kawale, Neeru Sharma, Nishant Shekhar, Subhash Banerjee*, Arti Srivastava*

    Journal of Polymer Materials, Vol.41, No.2, pp. 69-86, 2024, DOI:10.32604/jpm.2024.052695 - 09 August 2024

    Abstract This study aims to synthesize, characterize, and evaluate the photocatalytic efficiency of carboxymethyl cellulose (CMC) wrapped ZnONPs for the degradation of methylene blue (MB) dye under sunlight and also focuses on the effect of varying calcination temperatures on crystallite size of the synthesized ZnONPs@CMC. It focuses on developing biopolymer (CMC) wrapped ZnO nanoparticles (ZnONPs@CMC) at different calcination temperatures. ZnONPs@CMC are synthesized using zinc acetate dihydrate as a precursor under alkaline conditions, followed by adding capping agent CMC at various calcination temperatures ranging from 250°C to 650°C. The nanomaterials are characterized by UV-Vis, FTIR, and powder… More >

  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848 - 19 July 2024

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281 - 20 May 2024

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

  • Open Access

    ARTICLE

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

    Moumouni Sidibé1,2,*, Augustin K. N. Aoudji1, Yaya Issifou Moumouni3,*, Issa Sacko4, Idelphonse Saliou1, Bourema Koné2, Achille Ephrem Assogbadjo5, Afio Zannou1

    Revue Internationale de Géomatique, Vol.33, pp. 51-76, 2024, DOI:10.32604/rig.2024.045505 - 05 April 2024

    Abstract La dynamique d’occupation des terres constitue un préalable pour l’identification des contraintes de gestion des ressources naturelles, l’évolution de pratiques agraires et la croissance démographique. L’objectif de cette recherche est d’améliorer les connaissances sur la dynamique d’occupation des terres agricoles dans les zones de cultures sèches (Cinzana) et cotonnière (Kléla) au Mali. La méthodologie utilisée a consisté à la collecte des données planimétriques et à l’analyse diachronique à travers des images satellitaires Landsat TM (Thematic Mapper) de 2000 et OLI (Operational Land Image) de 2020. Les taux de dégradation et de déforestation des formations naturelles… More > Graphic Abstract

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

  • Open Access

    REVIEW

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

    Xiufeng Zhu1,2, Jingying Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 671-692, 2024, DOI:10.32604/fdmp.2023.045260 - 28 March 2024

    Abstract

    SR-AOP (sulfate radical advanced oxidation process) is a novel water treatment method able to eliminate refractory organic pollutants. Hydrodynamic cavitation (HC) is a novel green technology, that can effectively produce strong oxidizing sulfate radicals. This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation. Furthermore, some insights into the industrial application of HC/PS are also provided. Current research shows that this technology is feasible at the laboratory stage, but its application on larger scales requires

    More > Graphic Abstract

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

  • Open Access

    ARTICLE

    Degradation of FAK-targeting by proteolytic targeting chimera technology to inhibit the metastasis of hepatocellular carcinoma

    XINFENG ZHANG1,2,#, SHUANG LI2,#, MEIRU SONG1,2, YUE CHEN3, LIANGZHENG CHANG3, ZHERUI LIU4, HONGYUAN DAI3, YUTAO WANG4, GANGQI YANG3, YUN JIANG5,6,*, YINYING LU1,2,*

    Oncology Research, Vol.32, No.4, pp. 679-690, 2024, DOI:10.32604/or.2024.046231 - 20 March 2024

    Abstract Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally,… More >

  • Open Access

    ARTICLE

    Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics

    Hang Cui1, Hongbo Ren1,*, Qiong Wu1,2, Hang Lv1, Qifen Li1,2, Weisheng Zhou3

    Energy Engineering, Vol.121, No.3, pp. 581-601, 2024, DOI:10.32604/ee.2023.047470 - 27 February 2024

    Abstract Cascading faults have been identified as the primary cause of multiple power outages in recent years. With the emergence of integrated energy systems (IES), the conventional approach to analyzing power grid cascading faults is no longer appropriate. A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance. In this study, an innovative analysis method for cascading faults in integrated heat and electricity systems (IHES) is proposed. It considers the degradation characteristics of transmission and energy supply components in the system to address the impact of component aging on cascading faults. Firstly, degradation… More >

  • Open Access

    ARTICLE

    E3 ubiquitin ligase CBL-B suppresses vascular endothelial cell pyroptosis and injury in intracranial aneurysm by facilitating NLRP3 degradation

    WEI ZHENG1, CHENG LIU2,*

    BIOCELL, Vol.48, No.2, pp. 293-301, 2024, DOI:10.32604/biocell.2023.044211 - 23 February 2024

    Abstract Objective: Intracranial aneurysm (IA) represents a devastating disease with high rates of disability and mortality, which is initiated by dysfunction of endothelial cells (ECs). Evidence suggests the dysregulation of the E3 ubiquitin ligase family during EC injury. In this work, the role of an E3 ubiquitin ligase, casitas B lymphoma-B (CBL-B), was explored in human brain microvascular EC (HBMEC) function through the NLRP3 pathway. Methods: In vitro IA model was induced by treating HBMECs with oxidized low-density lipoprotein (ox-LDL). The levels of CBL-B and pyroptosis-related proteins NLRP3, ASC, cleaved caspase-1, and GSDME-N were determined by real-time-quantitative… More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084 - 22 September 2023

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor… More >

Displaying 1-10 on page 1 of 75. Per Page