Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    REVIEW

    Research Progress in the Preparation of MOF/Cellulose Composites and Their Applications in Fluorescent Detection, Adsorption, and Degradation of Pollutants in Wastewater

    Zhimin Zhao, Liyun Feng, Dongsheng Song, Ming Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 929-957, 2025, DOI:10.32604/jpm.2025.074529 - 26 December 2025

    Abstract Global water pollution is becoming increasingly serious, and compound pollutants such as heavy metals and organic dyes pose multidimensional threats to ecology and human health. Metal-organic skeleton compounds (MOFs) have been proven to be highly efficient in capturing a variety of pollutants by virtue of their large specific surface area, adjustable pore channels, and abundant active sites. However, the easy agglomeration of powders, the difficulty of recycling, and the poor long-term stability have limited their practical applications. Cellulose, as the most abundant renewable polymer in nature, has the characteristics of a three-dimensional network, mechanical flexibility,… More >

  • Open Access

    ARTICLE

    Optimizing the structure, morphological and optical properties of Co-doped CDS, nanoparticles synthesized at various doping concentration and design sensors for optimal application

    R. Rajeeva,b,*, C. M. S. Negia

    Chalcogenide Letters, Vol.22, No.5, pp. 469-480, 2025, DOI:10.15251/CL.2025.225.469

    Abstract Cobalt-doped cadmium sulphide nanoparticles of semiconductors (CDs: Co NPs) were synthesised using various cobalt concentrations utilising a microwave-assisted approach. Debye-Scherer equation revealed the nanoparticles' size range to be between 2 and 4 nm. Diffraction from X-rays revealed a zinc mix structure. According to the structure in the optical bandgap energies indicates that, doping has systematically raised the bandgap energy as the doping concentration raises. The composition of the nanoparticles which was verified by EDAX, validated the effective integration of cobalt into the CdS structure. The detection of different functional and vibrational groups was performed at More >

  • Open Access

    ARTICLE

    Synthesis and photocatalytic performance of ZnS nanoparticles via electrospinning assisted hydrothermal technique

    T. L. Yanga, P. Y. Linb, Y. S. Fuc, C. Y. Luoc, K. C. Hsua,*

    Chalcogenide Letters, Vol.22, No.7, pp. 625-636, 2025, DOI:10.15251/CL.2025.227.625

    Abstract In this study, high-crystallinity zinc sulfide (ZnS) at the nanoscale was synthesized using a combination of electrospinning and hydrothermal techniques. Initially, polyvinyl butyral (PVB)/ZnS composite nanofibers were fabricated via electrospinning. Subsequently, a hydrothermal reaction was employed to induce a dissolution-recrystallization mechanism, enabling the gradual formation of highly crystalline ZnS nanoparticles. The structural, morphological, and compositional characteristics of the ZnS nanoparticles were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Finally, the photocatalytic activity of three different ZnS materials—synthesized via electrospinning, hydrothermal treatment, and hydrothermal-assisted electrospinning—were More >

  • Open Access

    ARTICLE

    Fe-doped SnO2-SnS2/polypyrrole: an efficient photocatalyst for the degradation of organic pollutant in wastewater

    F. Khana, S. Noreena, M. S. Youssefb, A. Jilanic, H. T. Alib, G. Mustafad, M. Zahida,*

    Chalcogenide Letters, Vol.22, No.9, pp. 807-820, 2025, DOI:10.15251/CL.2025.229.807

    Abstract In this study Fe doped SnO2-SnS2 (FS) and Fe doped SnO2-SnS2-polypyrrole (FS-PPY) were synthesized and studied for the methylene blue (MB) egrdation under UV light. The morphological and structural characterizations were carried out by FTIR, SEM-EDX, XRD and XPS. It has been found that FS-PPy degrade methylene blue upto 98 % under optimized conditions as pH =3, dye concentration = 10 ppm, oxidant dose = 2 mM. The Langmuir-Hinshelwood kinetics model fitted well. The optimization was studied using response surface methodology. Scavengers study was carried out to find the active species. Reusability of photocatalyst was evaluated More >

  • Open Access

    ARTICLE

    Development of AgCuS nanostructures with optimized photocatalytic efficiency under solar irradiation

    S. Younus, N. Amin*, A. Ali, K. Mahmood

    Chalcogenide Letters, Vol.22, No.10, pp. 905-915, 2025, DOI:10.15251/CL.2025.2210.905

    Abstract Wastewater generated by the textile industry contains high levels of various pollutants. Advanced conventional methods, such as chemical and electrical treatments, are effective in addressing these contaminants. However, the significant operational and capital costs associated with these conventional systems limit their accessibility for industrial stakeholders. In contrast, more economically viable methods tend to be less efficient. This study aims to identify a suitable approach for integrating photocatalytic degradation (PCD) with a low-cost method to enhance the cost-effectiveness of wastewater treatment processes in the textile sector. The study utilized silver copper sulfide (AgCuS) nanocomposites as a… More >

  • Open Access

    ARTICLE

    CdS nanoparticles-Loaded 1D attapulgite Composites for Boosting Photocatalytic Activity

    Xiaowang Lu1,*, Cheng Luo1, Xinyu Zhu1, Ziwen Gu1, Chen Da1, Junyan Zhou1, Junchao Qian2

    Chalcogenide Letters, Vol.22, No.11, pp. 987-995, 2025, DOI:10.15251/CL.2025.2211.987

    Abstract Attapulgite clay-supported CdS composites were synthesized via hydrothermal approach and applied to remove Rhodamine B (RhB). The structural, morphological, and physicochemical properties of the materials were systematically characterized by XRD, TEM, XPS, BET and UV-Vis DRS. The combination of CdS and attapulgite could enhance active site availability and surface area, thereby boosting photocatalytic activity.The optimized CdS/attapulgite composite demonstrated remarkable photocatalytic efficiency under visible-light illumination. In addition, a potential photocatalytic degradation mechanism by the composites was proposed. More >

  • Open Access

    ARTICLE

    Performance and Degradation Assessment of PV Modules Exposed to Short-Term Outdoor Conditions in Two Distinct US Climatic Zones

    Bouasria Youssef, Zaimi Mhammed, El Ainaoui Khadija, Assaid El Mahdi*

    Energy Engineering, Vol.122, No.10, pp. 4195-4223, 2025, DOI:10.32604/ee.2025.067425 - 30 September 2025

    Abstract Current research focuses on the performance degradation of photovoltaic (PV) modules, examining both crystalline silicon (p-Si and m-Si) and thin-film technologies, including a-Si/c-Si, HIT, CdTe and CIGS. These modules were operated outdoors in two distinct climatic zones in the United States (US) over a period of three years. The degradation analysis includes the study of various quantities, such as the decrease in peak power, the reduction in current and voltage, and the variation in the fill factor. The annual degradation rate (DR) of PV modules is obtained by a linear fit of the effective maximum… More >

  • Open Access

    PROCEEDINGS

    Evaluating the Degradation Behavior of Additive Manufacturing Zn Alloys for Biomedical Application

    Kaiyang Li1, Renjing Li1, Hui Wang2, Naiqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012643

    Abstract Zn is a promising biomedical implant for its good biocompatibility, moderate mechanical strength, and suitable degradation rate. As a novel fabricating method, Additive Manufacturing (AM) could prepare biomedical Zn by raw powder deposition, melting, and molten pool solidification in a layer-by-layer pattern, which favors the customized shape and well-controlled geometry of the final product. Meanwhile, the rapid heating and solidification from AM often induces unique structural changes compared with traditional fabrication techniques, thus subsequently affecting the degradation behavior. Still, setting up the correlations among AM fabrication, structural changes and degradation behavior of Zn remains a… More >

  • Open Access

    ARTICLE

    Calibration of Elastic-Plastic Degradation Model for 40Cr Steel Applied in Finite Element Simulation of Shear Pins of Friction Pendulum Bearings

    Mianyue Yang1,*, Huasheng Sun1, Weigao Sheng2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2749-2761, 2025, DOI:10.32604/cmc.2025.068009 - 23 September 2025

    Abstract The shear pin of the friction pendulum bearing (FPB) can be made of 40Cr steel. In conceptual design, the optimal cut-off point of the shear pin is predetermined, guiding the design of bridges isolated by FPBs to maximize their isolation performance. Current researches on the shear pins are mainly based on linear elastic models, neglecting their plasticity, damage, and fracture mechanical properties. To accurately predict its cutoff behavior, the elastic-plastic degradation model of 40Cr steel is indeed calibrated. For this purpose, the Ramberg-Osgood model, the Bao-Wierzbicki damage initiation criterion, and the linear damage evolution criterion… More >

Displaying 1-10 on page 1 of 104. Per Page