Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (79)
  • Open Access

    ARTICLE

    Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process

    Jie Lin*, Hongchi Shen, Tingting Pei, Yan Wu

    Energy Engineering, Vol.122, No.1, pp. 331-347, 2025, DOI:10.32604/ee.2024.055611 - 27 December 2024

    Abstract Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unit power generation costs. The service life of these modules directly affects these costs. Over time, the performance of PV modules gradually declines due to internal degradation and external environmental factors. This cumulative degradation impacts the overall reliability of photovoltaic power generation. This study addresses the complex degradation process of PV modules by developing a two-stage Wiener process model. This approach accounts for the distinct phases of degradation resulting from module aging and environmental influences. A power degradation model based on the More > Graphic Abstract

    Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process

  • Open Access

    ARTICLE

    Effect of Concentration and Residence Time of Joncryl®ADR4368 on Melt Processability of Poly(3-hydroxybutyrate)

    Jéssica da Silva Chagas1,2, José Elson Soares Filho1,2, Natália Fernanda Inocêncio Silva1,2, Marcelo Massayoshi Ueki3, Eliton Souto de Medeiros1,2, Renate Maria Ramos Wellen1, Mauricio Pinheiro de Oliveira4, Gelsoneide da Silva Gois5, Yêda Medeiros Bastos de Almeida5, Amélia S. F. Santos1,2,*

    Journal of Renewable Materials, Vol.12, No.12, pp. 2079-2094, 2024, DOI:10.32604/jrm.2024.055361 - 20 December 2024

    Abstract Poly(3-hydroxybutyrate) (PHB) is a biothechnological and biodegradable thermoplastic polymer from the polyhydroxyalkanoates (PHAs) family, whose chain regularity, high molecular weight, and physical and mechanical properties comparable to polypropylene (PP) are characteristics that have made PHB a prominent commercial bioplastic. Nevertheless, its susceptibility to thermal degradation and hydrolysis has limited many applications. To address the challenges associated with processing, a random copolymer of 95.86 mol% 3-hydroxybutyrate and 4.14 mol% 3-hydroxyvalerate (referred as PHB) was compounded without (neat PHB) and with 0.25, 0.5, 1, and 1.5 wt% of chain extender (Joncryl®ADR 4368), consisting of multifunctional epoxy groups, and… More >

  • Open Access

    PROCEEDINGS

    Sequential Activation of M1and M2 Phenotype in Macrophages by Mg Degradation from Ti-Mg Alloy for Enhanced Osteogenesis

    Luxin Liang1, Bing Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012682

    Abstract Background: Even though the modulatory effects of Mg and its alloys on bone healing cells during the last two decades, relatively limited attention has been paid on their inflammation-modulatory properties. Understanding the activation process of macrophages in response to the dynamic degradation process of Mg as well as the relationship between macrophage phenotypes and their osteogenic potential is critical for the design and development of advanced Mg-based or Mg-incorporated biomaterials.
    Methods: In this work, Ti-0.625Mg (wt.%) alloy fabricated by mechanical alloying (MA) and subsequent spark plasma sintering (SPS) was employed as a material model to explore the inflammatory response… More >

  • Open Access

    ARTICLE

    Itinerary-Dependent Degradation Analysis of a Lithium-Ion Battery Cell for E-Bike Applications in Rwanda

    Aimable Ngendahayo1,*, Adrià Junyent-Ferré2, Joan Marc Rodriguez Bernuz3, Etienne Ntagwirumugara1

    Energy Engineering, Vol.121, No.11, pp. 3121-3131, 2024, DOI:10.32604/ee.2024.053100 - 21 October 2024

    Abstract There are obstacles to the widespread use of small electric vehicles (EVs) in Rwanda, including concerns regarding the battery range and lifespan. Lithium-ion batteries (LIBs) play an important role in EVs. However, their performance declines over time because of several factors. To optimize battery management systems and extend the range of EVs in Rwanda, it is essential to understand the influence of the driving profiles on lithium-ion battery degradation. This study analyzed the degradation patterns of a lithium-ion battery cell that propels an E-bike using various real-world E-bike driving cycles that represent Rwandan driving conditions… More >

  • Open Access

    ARTICLE

    Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions

    Guowei Feng1, Qing Li2,3, Yang Wang1,*, Nan Lin4, Sixi Zha1, Hang Dong1, Ping Chen5, Minjun Zheng6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2139-2161, 2024, DOI:10.32604/fdmp.2024.053941 - 23 August 2024

    Abstract High-density polyethylene (HDPE) pipes have gradually become the first choice for gas networks because of their excellent characteristics. As the use of pipes increases, there will unavoidably be a significant amount of waste generated when the pipes cease their operation life, which, if improperly handled, might result in major environmental contamination issues. In this study, the thermal degradation of polyethylene materials is simulated for different pressures (10, 50, 100, and 150 MPa) and temperatures (2300, 2500, 2700, and 2900 K) in the framework of Reactive Force Field (ReaxFF) molecular dynamics simulation. The main gas products,… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of CMC-Wrapped ZnONPs at Different Calcination Temperatures for Photocatalytic Degradation of Methylene Blue Dye under Sunlight

    Abhishek Kumar Patel, Ashlesha P. Kawale, Neeru Sharma, Nishant Shekhar, Subhash Banerjee*, Arti Srivastava*

    Journal of Polymer Materials, Vol.41, No.2, pp. 69-86, 2024, DOI:10.32604/jpm.2024.052695 - 09 August 2024

    Abstract This study aims to synthesize, characterize, and evaluate the photocatalytic efficiency of carboxymethyl cellulose (CMC) wrapped ZnONPs for the degradation of methylene blue (MB) dye under sunlight and also focuses on the effect of varying calcination temperatures on crystallite size of the synthesized ZnONPs@CMC. It focuses on developing biopolymer (CMC) wrapped ZnO nanoparticles (ZnONPs@CMC) at different calcination temperatures. ZnONPs@CMC are synthesized using zinc acetate dihydrate as a precursor under alkaline conditions, followed by adding capping agent CMC at various calcination temperatures ranging from 250°C to 650°C. The nanomaterials are characterized by UV-Vis, FTIR, and powder… More >

  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848 - 19 July 2024

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281 - 20 May 2024

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

  • Open Access

    ARTICLE

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

    Moumouni Sidibé1,2,*, Augustin K. N. Aoudji1, Yaya Issifou Moumouni3,*, Issa Sacko4, Idelphonse Saliou1, Bourema Koné2, Achille Ephrem Assogbadjo5, Afio Zannou1

    Revue Internationale de Géomatique, Vol.33, pp. 51-76, 2024, DOI:10.32604/rig.2024.045505 - 05 April 2024

    Abstract La dynamique d’occupation des terres constitue un préalable pour l’identification des contraintes de gestion des ressources naturelles, l’évolution de pratiques agraires et la croissance démographique. L’objectif de cette recherche est d’améliorer les connaissances sur la dynamique d’occupation des terres agricoles dans les zones de cultures sèches (Cinzana) et cotonnière (Kléla) au Mali. La méthodologie utilisée a consisté à la collecte des données planimétriques et à l’analyse diachronique à travers des images satellitaires Landsat TM (Thematic Mapper) de 2000 et OLI (Operational Land Image) de 2020. Les taux de dégradation et de déforestation des formations naturelles… More > Graphic Abstract

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

  • Open Access

    REVIEW

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

    Xiufeng Zhu1,2, Jingying Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 671-692, 2024, DOI:10.32604/fdmp.2023.045260 - 28 March 2024

    Abstract

    SR-AOP (sulfate radical advanced oxidation process) is a novel water treatment method able to eliminate refractory organic pollutants. Hydrodynamic cavitation (HC) is a novel green technology, that can effectively produce strong oxidizing sulfate radicals. This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation. Furthermore, some insights into the industrial application of HC/PS are also provided. Current research shows that this technology is feasible at the laboratory stage, but its application on larger scales requires

    More > Graphic Abstract

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

Displaying 1-10 on page 1 of 79. Per Page