Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Chiral Copolymers of (R)-N-(1-Phenyl-Ethyl) Methacrylamide (R-NPEMAM) and 2-Hydroxy Ethyl Methacrylate (HEMA): Investigation of PhysicoChemical Behavior, Thermal Properties and Degradation Kinetics

    DIBYENDU S. BAG*, SHILPI TIWARI, AKANSHA DIXIT, KM. MEENU

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 105-123, 2023, DOI:10.32381/JPM.2023.40.1-2.9

    Abstract In this paper, we report the microstructural investigation and influence of H-bonding on the thermal behavior e.g., glass transition (Tg ) and thermal degradation of chiral copolymers of (R)- N-(1-phenyl-ethyl) methacrylamide (R-NPEMAM) and 2-hydroxy ethyl methacrylate (HEMA). The Tg increases with the increase of chiral unit content in the copolymers and then attains optimum at around 25 mole % of chiral content. Thereafter it decreases with the increase of chiral content. The effect of copolymer composition and secondary interaction associated with the Hbonding on the thermal properties of these copolymers was also studied. Secondary interaction, specifically More >

  • Open Access

    PROCEEDINGS

    Uncovering the Intrinsic Deficiencies of Phase-Field Modeling for Dynamic Fracture

    Jiale Ji1,*, Mengnan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09632

    Abstract The phase-field fracture (PFF) approach has achieved great triumphs in modeling quasi-static fracture. Nevertheless, its reliability in serving dynamic fractures still leaves something to be desired, such as the prediction of the limiting crack velocity. Using a pre-strained fracture configuration, we discovered a disturbing phenomenon that the crack limiting speed identified by the dynamic PFF model is not related to the specific material, which seriously deviates from the experimental observation. To ascertain the truth, we first ruled out the correlation between the limiting crack velocity on the phase-field characteristic scale and external loading. Afterward, by More >

  • Open Access

    PROCEEDINGS

    Measuring the Tensile Strength Degradations of Mineral Grain Interfaces (MGIs) in the Granite After Thermo-hydro-mechanical (THM) Coupling

    Mengyi Li1, Zhijun Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09829

    Abstract Buried in depth for decades of years, granite in the deep geological repository will be subjected to extremely complex effects of thermo-hydro-mechanical (THM) treatment, and the tensile strengths of mineral grain interfaces (MGIs) are inevitably impacted by the THM treatment [1, 2]. Originated by the failure modes of granite after THM treatment, the tensile strength of MGI plays an important role in determining the macro mechanical properties of THM-treated granite [3, 4]. However, the accurate characterization of the tensile strength degradations of MGIs with THM treatment is still lacking. In this study, the varied tensile… More >

  • Open Access

    ARTICLE

    Identification of microbial metabolites that accelerate the ubiquitin-dependent degradation of c-Myc

    ZIYU LIU1,2, AKIKO OKANO3,4, EMIKO SANADA1,3,4, YUSHI FUTAMURA3,4, TOSHIHIKO NOGAWA3,5, KOSUKE ISHIKAWA6, KENTARO SEMBA7,8, JIANG LI9, XIAOMENG LI10, HIROYUKI OSADA3,4,11,*, NOBUMOTO WATANABE1,2,4,*

    Oncology Research, Vol.31, No.5, pp. 655-666, 2023, DOI:10.32604/or.2023.030248

    Abstract

    Myc belongs to a family of proto-oncogenes that encode transcription factors. The overexpression of c-Myc causes many types of cancers. Recently, we established a system for screening c-Myc inhibitors and identified antimycin A by screening the RIKEN NPDepo chemical library. The specific mechanism of promoting tumor cell metastasis by high c-Myc expression remains to be explained. In this study, we screened approximately 5,600 microbial extracts using this system and identified a broth prepared from Streptomyces sp. RK19-A0402 strongly inhibits c-Myc transcriptional activity. After purification of the hit broth, we identified compounds closely related to the aglycone

    More > Graphic Abstract

    Identification of microbial metabolites that accelerate the ubiquitin-dependent degradation of c-Myc

  • Open Access

    ARTICLE

    Effect of PEG Incorporation on Physicochemical and in vitro Degradation of PLLA/PDLLA Blends: Application in Biodegradable Implants

    Mochamad Chalid1,*, Gifrandy Gustiraharjo1, Azizah Intan Pangesty1, Alyssa Adyandra1, Yudan Whulanza2, Sugeng Supriadi2

    Journal of Renewable Materials, Vol.11, No.7, pp. 3043-3056, 2023, DOI:10.32604/jrm.2023.026788

    Abstract Polyethylene glycol (PEG) was added at different concentrations to the blend of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid)(PDLLA) to tailor the properties. The differential scanning calorimetry (DSC) measurement showed that all blends were miscible due to shifting a single glass transition temperature into a lower temperature for increasing PEG content. The DSC, FTIR, and XRD results implied the crystallinity enhancement for PEG content until 8 wt%, then decreased at 12 wt% PEG. The XRD result indicated the homo crystalline phase formation in all blends and no stereocomplex crystal. The in vitro degradation study indicated that… More > Graphic Abstract

    Effect of PEG Incorporation on Physicochemical and <i>in vitro</i> Degradation of PLLA/PDLLA Blends: Application in Biodegradable Implants

  • Open Access

    ARTICLE

    Assessment of Aged Offshore Jacket Type Platforms Considering Environmental Loads and Degradation Parameters

    Yazeed Al-Radhi1,*, Farzad Hejazi2, Azmi Abdulkarim3, Ali Feroozi4

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 89-113, 2023, DOI:10.32604/sdhm.2023.011439

    Abstract Offshore steel structures are a common investment in oil and gas industries operating in shallow to medium depth seas. These structures have become increasingly popular since the mid-19th century, with a typical design life of 30-50 years. Despite their popularity, the structural integrity of existing offshore structures remains a controversial topic. Environmental loads and material degradation have been identified as significant factors that can compromise the structural integrity of offshore structures. To address this issue, this study aims to investigate the reserved strength capacity of a selected offshore structure located in the Malaysian Seas. The… More >

  • Open Access

    ARTICLE

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

    Penghui Li1,2, Zhengwei Jiang2, Chi Yang2, Jianpeng Ren1,2, Bo Jiang1,2, Wenjuan Wu1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2233-2248, 2023, DOI:10.32604/jrm.2023.025279

    Abstract Lignin is a natural polymer, second only to cellulose in natural reserves. Degradation is one of the ways to achieve the high-value transformation of lignin. Deep eutectic solvent (DES) thermal degradation of lignin can be used as an excellent green degradation method. This paper introduces the degradation mechanism and effect of the lactic acid-choline chloride DES system in dissolving and degrading alkaline lignin, and the final solvent recovery. It can also be found from the scanning electron microscope (SEM) images that the surface of the degraded solid product is transformed from smooth to disordered. Fourier… More > Graphic Abstract

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

  • Open Access

    ARTICLE

    A Novel Dominant Allele from 93-11, ES(4), Represses Reactive Oxygen Species Scavenging and Leads to Early-Senescence in Rice

    Zhishu Jiang#, Cong Gan#, Yulian Liu, Xiaoli Lin, Limei Peng, Yongping Song, Xiaowei Luo, Jie Xu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 665-677, 2023, DOI:10.32604/phyton.2023.025266

    Abstract Senescence is the last developmental process in plant, which has an important impact on crop yield and quality. In this study, a stable hereditary early-senescence line BC64 was isolated from the high-generation recombinant inbred lines of 93-11 and Wuyunjing7 (W7). Genetic analysis showed that the premature aging phenotype was controlled by a dominant gene derived from 93-11. By linkage analysis, the gene was primarily mapped in the region between marker B4 and B5 near the centromere of chromosome 4, described as ES(4). Through multiple backcrossing with W7, the near-isogenic line of ES(4) (NIL-ES(4)) was obtained. Compared More >

  • Open Access

    REVIEW

    The role of 5′-adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle atrophy

    KAI DANG, HAFIZ MUHAMMAD UMER FAROOQ, YUAN GAO, XIAONI DENG, AIRONG QIAN*

    BIOCELL, Vol.47, No.2, pp. 269-281, 2023, DOI:10.32604/biocell.2023.023766

    Abstract As a key coordinator of metabolism, AMP-activated protein kinase (AMPK) is vitally involved in skeletal muscle maintenance. AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by regulating many downstream targets and plays important roles in the development and growth of skeletal muscle. AMPK is activated by phosphorylation and exerts its function as a kinase in many processes, including synthesis and degradation of proteins, mitochondrial biogenesis, glucose uptake, and fatty acid and cholesterol metabolism. Skeletal muscle atrophy is a result of various diseases or disorders and is characterized by a decrease More >

  • Open Access

    ARTICLE

    A Comparative Investigation of the Biodegradation Behaviour of Linseed Oil-Based Cross-Linked Composites Filled with Industrial Waste Materials in Two Different Soils

    Eglė Malachovskienė1,*, Danguolė Bridžiuvienė1, Jolita Ostrauskaitė2, Justina Vaičekauskaitė2, Gailė Žalūdienė3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1255-1269, 2023, DOI:10.32604/jrm.2022.023574

    Abstract The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers (pine needles, pine bark, grain mill waste, rapeseed cake) and a control sample without filler was studied during 180 days of exposure to two types of forest soil: deciduous and coniferous. The weight loss, morphological, and structural changes of polymer composites were noticed after 180 days of the soil burial test. The greatest weight loss of all tested samples was observed in coniferous forest soil (41.8%–63.2%), while in deciduous forest soil, it ranged between 37.7% and 42.3%. The most significant… More >

Displaying 11-20 on page 2 of 75. Per Page