Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (617)
  • Open Access

    ARTICLE

    Optimizing Hybrid Fibre-Reinforced Polymer Bars Design: A Machine Learning Approach

    Aneel Manan1, Pu Zhang1,*, Shoaib Ahmad2, Jawad Ahmad2

    Journal of Polymer Materials, Vol.41, No.1, pp. 15-44, 2024, DOI:10.32604/jpm.2024.053859

    Abstract Fiber-reinforced polymer (FRP) bars are gaining popularity as an alternative to steel reinforcement due to their advantages such as corrosion resistance and high strength-to-weight ratio. However, FRP has a lower modulus of elasticity compared to steel. Therefore, special attention is required in structural design to address deflection related issues and ensure ductile failure. This research explores the use of machine learning algorithms such as gene expression programming (GEP) to develop a simple and effective equation for predicting the elastic modulus of hybrid fiber-reinforced polymer (HFPR) bars. A comprehensive database of 125 experimental results of HFPR… More >

  • Open Access

    ARTICLE

    A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts

    Huile Zhang1,2,*, Shikang Li2, Yurui Wu3, Pengpeng Zhi1, Wei Wang1,4, Zhonglai Wang1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1975-1996, 2024, DOI:10.32604/cmes.2024.050185

    Abstract Carbon fiber composites, characterized by their high specific strength and low weight, are becoming increasingly crucial in automotive lightweighting. However, current research primarily emphasizes layer count and orientation, often neglecting the potential of microstructural design, constraints in the layup process, and performance reliability. This study, therefore, introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic (CFRP) drive shafts. Initially, parametric modeling of the microscale cell was performed, and its elastic performance parameters were predicted using two homogenization methods, examining the impact of fluctuations in microscale cell parameters on composite material performance. A finite… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous–Discontinuous Element Method

    Rui Zhang1, Lixiang Wang2,*, Jing Li1,4, Chun Feng2, Yiming Zhang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2103-2129, 2024, DOI:10.32604/cmes.2024.049885

    Abstract Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations. Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production. In this study, we employ a hybrid finite-discrete element method, known as the continuous–discontinuous element method (CDEM), to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters. The model incorporates the four most prevalent perforation geometries, as delineated in an engineering technical report. Real-world perforations deviate from the ideal cylindrical shape, More >

  • Open Access

    ARTICLE

    Design and Performance Analysis of HMDV Dynamic Inertial Suspension Based on Active Disturbance Rejection Control

    Xiaofeng Yang1,3,4, Wei Wang1,3,4,*, Yujie Shen2,4, Changning Liu1,3,4, Tianyi Zhang1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1485-1506, 2024, DOI:10.32604/cmes.2024.049837

    Abstract This paper addresses the impact of vertical vibration negative effects, unbalanced radial forces generated by the static eccentricity of the hub motor, and road excitation on the suspension performance of Hub Motor Driven Vehicle (HMDV). A dynamic inertial suspension based on Active Disturbance Rejection Control (ADRC) is proposed, combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC, which distinguishes between internal and external disturbances and arranges the transition process. Firstly, a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force… More > Graphic Abstract

    Design and Performance Analysis of HMDV Dynamic Inertial Suspension Based on Active Disturbance Rejection Control

  • Open Access

    ARTICLE

    Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design

    Kun Yan1, Yunyu Wang2, Jun Yan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1949-1974, 2024, DOI:10.32604/cmes.2024.048877

    Abstract Topology optimization of thermal-fluid coupling problems has received widespread attention. This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design. The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends, ensuring separation between the two fluid domains. Additionally, a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient. Furthermore, a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers. This program leverages parallel computing, significantly reducing the time required for More >

  • Open Access

    ARTICLE

    Optimal Design of Drying Process of the Potatoes with Multi-Agent Reinforced Deep Learning

    Mohammad Yaghoub Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 511-536, 2024, DOI:10.32604/fhmt.2024.051004

    Abstract Heat and mass transport through evaporation or drying processes occur in many applications such as food processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation, momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the… More >

  • Open Access

    ARTICLE

    A Study on Optimizing the Double-Spine Type Flow Path Design for the Overhead Transportation System Using Tabu Search Algorithm

    Nguyen Huu Loc Khuu1,2,3, Thuy Duy Truong1,2,3, Quoc Dien Le1,2,3, Tran Thanh Cong Vu1,2,3, Hoa Binh Tran1,2,3, Tuong Quan Vo1,2,3,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 255-279, 2024, DOI:10.32604/iasc.2024.043854

    Abstract Optimizing Flow Path Design (FPD) is a popular research area in transportation system design, but its application to Overhead Transportation Systems (OTSs) has been limited. This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows. We employ transportation methods, specifically the North-West Corner and Stepping-Stone methods, to determine empty vehicle travel flows. Additionally, the Tabu Search (TS) algorithm is applied to branch the 10 stations into two main layout branches. The results obtained from our proposed method demonstrate More >

  • Open Access

    ARTICLE

    Design Pattern and Challenges of Federated Learning with Applications in Industrial Control System

    Hina Batool1, Jiuyun Xu1,*, Ateeq Ur Rehman2, Habib Hamam3,4,5,6

    Journal on Artificial Intelligence, Vol.6, pp. 105-128, 2024, DOI:10.32604/jai.2024.049912

    Abstract Federated Learning (FL) appeared as an encouraging approach for handling decentralized data. Creating a FL system needs both machine learning (ML) knowledge and thinking about how to design system software. Researchers have focused a lot on the ML side of FL, but have not paid enough attention to designing the software architecture. So, in this survey, a set of design patterns is described to tackle the design issues. Design patterns are like reusable solutions for common problems that come up when designing software architecture. This paper focuses on (1) design patterns such as architectures, frameworks,… More >

  • Open Access

    ARTICLE

    A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity

    Yan Dong1,2, Kang Zhao1, Liang Gao1, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1-18, 2024, DOI:10.32604/cmc.2024.048870

    Abstract With the continuous advancement in topology optimization and additive manufacturing (AM) technology, the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly. However, a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures, potentially resulting in diminished efficiency or macroscopic failure. A Hybrid Level Set Method (HLSM) is proposed, specifically designed to enhance connectivity among non-uniform microstructures, contributing to the design of functionally graded cellular structures. The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.… More >

  • Open Access

    ARTICLE

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

    Parth Khandelwal1, Harshit2, Indranil Manna1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1727-1755, 2024, DOI:10.32604/cmc.2024.042752

    Abstract Metallic alloys for a given application are usually designed to achieve the desired properties by devising experiments based on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises. However, the influence of process parameters and material properties is often non-linear and non-colligative. In recent years, machine learning (ML) has emerged as a promising tool to deal with the complex interrelation between composition, properties, and process parameters to facilitate accelerated discovery and development of new alloys and functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles, to design… More > Graphic Abstract

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

Displaying 1-10 on page 1 of 617. Per Page