Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (498)
  • Open Access

    ARTICLE

    Epileptic Seizures Diagnosis Using Amalgamated Extremely Focused EEG Signals and Brain MRI

    Farah Mohammad*, Saad Al-Ahmadi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 623-639, 2023, DOI:10.32604/cmc.2023.032552 - 22 September 2022

    Abstract

    There exists various neurological disorder based diseases like tumor, sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the most common neurological illness in humans, comparable to stroke. Epilepsy is a severe chronic neurological illness that can be discovered through analysis of the signals generated by brain neurons and brain Magnetic resonance imaging (MRI). Neurons are intricately coupled in order to communicate and generate signals from human organs. Due to the complex nature of electroencephalogram (EEG) signals and MRI’s the epileptic seizures detection and brain related problems diagnosis becomes a challenging task. Computer based

    More >

  • Open Access

    ARTICLE

    Enhanced Cuckoo Search Optimization Technique for Skin Cancer Diagnosis Application

    S. Ayshwarya Lakshmi1,*, K. Anandavelu2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3403-3413, 2023, DOI:10.32604/iasc.2023.030970 - 17 August 2022

    Abstract Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection. The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the skin cancer picture segmentation process. Because time and resources are always limited, the proposed enhanced cuckoo search optimization algorithm is one of the most effective strategies for dealing with global optimization difficulties. One of the most significant requirements is to design optimal solutions to optimize their use. There is no particular technique that can answer all optimization issues. The proposed enhanced… More >

  • Open Access

    ARTICLE

    SVM Algorithm for Vibration Fault Diagnosis in Centrifugal Pump

    Nabanita Dutta1, Palanisamy Kaliannan1,*, Paramasivam Shanmugam2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2997-3020, 2023, DOI:10.32604/iasc.2023.028704 - 17 August 2022

    Abstract Vibration failure in the pumping system is a significant issue for industries that rely on the pump as a critical device which requires regular maintenance. To save energy and money, a new automated system must be developed that can detect anomalies at an early stage. This paper presents a case study of a machine learning (ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive (VFD). Since the intensity of the vibrational effect depends on which axis has the most significant effect, a three-axis accelerometer is used to… More >

  • Open Access

    ARTICLE

    WACPN: A Neural Network for Pneumonia Diagnosis

    Shui-Hua Wang1, Muhammad Attique Khan2, Ziquan Zhu1, Yu-Dong Zhang1,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 21-34, 2023, DOI:10.32604/csse.2023.031330 - 16 August 2022

    Abstract Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaotic particle swarm optimization (ACP) algorithm to train the feed-forward neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler attractor (RA) to improve the performance of standard particle swarm optimization. The final combined model is named WE-layer ACP-based network (WACPN), which attains a sensitivity of 91.87 ± 1.37%, a specificity of 90.70 ± 1.19%, a precision of More >

  • Open Access

    ARTICLE

    Sailfish Optimization with Deep Learning Based Oral Cancer Classification Model

    Mesfer Al Duhayyim1,*, Areej A. Malibari2, Sami Dhahbi3, Mohamed K. Nour4, Isra Al-Turaiki5, Marwa Obayya6, Abdullah Mohamed7

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 753-767, 2023, DOI:10.32604/csse.2023.030556 - 16 August 2022

    Abstract Recently, computer aided diagnosis (CAD) model becomes an effective tool for decision making in healthcare sector. The advances in computer vision and artificial intelligence (AI) techniques have resulted in the effective design of CAD models, which enables to detection of the existence of diseases using various imaging modalities. Oral cancer (OC) has commonly occurred in head and neck globally. Earlier identification of OC enables to improve survival rate and reduce mortality rate. Therefore, the design of CAD model for OC detection and classification becomes essential. Therefore, this study introduces a novel Computer Aided Diagnosis for… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Based Lung Cancer Detection and Survival Rate Prediction

    Sindhuja Manickavasagam1,*, Poonkuzhali Sugumaran2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 939-953, 2023, DOI:10.32604/csse.2023.030491 - 16 August 2022

    Abstract The combination of machine learning (ML) approaches in healthcare is a massive advantage designed at curing illness of millions of persons. Several efforts are used by researchers for detecting and providing primary phase insights as to cancer analysis. Lung cancer remained the essential source of disease connected mortality for both men as well as women and their frequency was increasing around the world. Lung disease is the unrestrained progress of irregular cells which begin off in one or both Lungs. The previous detection of cancer is not simpler procedure however if it can be detected,… More >

  • Open Access

    ARTICLE

    Multi-Features Disease Analysis Based Smart Diagnosis for COVID-19

    Sirisati Ranga Swamy1, S. Phani Praveen2, Shakeel Ahmed3,*, Parvathaneni Naga Srinivasu4, Abdulaziz Alhumam3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 869-886, 2023, DOI:10.32604/csse.2023.029822 - 16 August 2022

    Abstract Coronavirus 2019 (COVID -19) is the current global buzzword, putting the world at risk. The pandemic’s exponential expansion of infected COVID-19 patients has challenged the medical field’s resources, which are already few. Even established nations would not be in a perfect position to manage this epidemic correctly, leaving emerging countries and countries that have not yet begun to grow to address the problem. These problems can be solved by using machine learning models in a realistic way, such as by using computer-aided images during medical examinations. These models help predict the effects of the disease… More >

  • Open Access

    ARTICLE

    Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis

    Ghada Emam Atteia*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 361-376, 2023, DOI:10.32604/csse.2023.029597 - 16 August 2022

    Abstract Acute Lymphoblastic Leukemia (ALL) is a fatal malignancy that is featured by the abnormal increase of immature lymphocytes in blood or bone marrow. Early prognosis of ALL is indispensable for the effectual remediation of this disease. Initial screening of ALL is conducted through manual examination of stained blood smear microscopic images, a process which is time-consuming and prone to errors. Therefore, many deep learning-based computer-aided diagnosis (CAD) systems have been established to automatically diagnose ALL. This paper proposes a novel hybrid deep learning system for ALL diagnosis in blood smear images. The introduced system integrates… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Method for Diagnosis of Cucurbita Leaf Diseases

    V. Nirmala1,*, B. Gomathy2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2585-2601, 2023, DOI:10.32604/csse.2023.027512 - 01 August 2022

    Abstract In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method More >

  • Open Access

    ARTICLE

    Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model

    V. Thanikachalam1,*, M. G. Kavitha2, V. Sivamurugan1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2129-2145, 2023, DOI:10.32604/csse.2023.026527 - 01 August 2022

    Abstract In recent times, Internet of Things (IoT) and Deep Learning (DL) models have revolutionized the diagnostic procedures of Diabetic Retinopathy (DR) in its early stages that can save the patient from vision loss. At the same time, the recent advancements made in Machine Learning (ML) and DL models help in developing Computer Aided Diagnosis (CAD) models for DR recognition and grading. In this background, the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network (ODBN) model i.e., NS-ODBN model for diagnosis of DR. The presented model involves… More >

Displaying 231-240 on page 24 of 498. Per Page