Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Algebraic Formulation of Elastodynamics: the Cell Method

    E. Tonti, F. Zarantonello1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.1, pp. 37-70, 2010, DOI:10.3970/cmes.2010.064.037

    Abstract This paper completes a preceeding paper on the algebraic formulation of elastostatics [Tonti, Zarantonello (2009)]. It shows how to obtain a numerical formulation for elastodynamics by avoiding any process of discretization of differential equations, i.e. PDE-free formulation. To this end, we must analyse in more detail the discretization of time by highlighting the need to introduce a dual subdivision of the time axis, as we did for a space cell complex. The mass matrix obtained with the direct algebraic formulation is diagonal. More >

  • Open Access

    ARTICLE

    Numerical Computation of Discrete Differential Operators on Non-Uniform Grids

    N. Sukumar1, J. E. Bolander1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 691-706, 2003, DOI:10.3970/cmes.2003.004.691

    Abstract In this paper, we explore the numerical approximation of discrete differential operators on non-uniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the {\em Laplace weight function}, which has been previously adopted in meshless Galerkin methods. We develop a difference approximation for the diffusion operator on irregular grids, and present numerical solutions for the Poisson equation. On regular grids, the discrete Laplacian is shown to reduce to the classical finite difference scheme. Two techniques to… More >

  • Open Access

    ABSTRACT

    Discrete Lattice Modeling of Atomistic Locations in the Interfaces Between Nanomaterials

    V.K. Tewary

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 113-114, 2011, DOI:10.3970/icces.2011.019.113

    Abstract Interfacial region between two nanomaterials can be treated as a separate material since its atomistic structure and characteristics are different than the two materials on its either side. The mechanical as well as electronic properties of composite materials are sensitive to the interfaces. For industrial application of the nanomaterial systems, it is vital to model and measure the discrete atomistic locations in the interface during operating conditions. As the dimensions of nanomaterial systems shrink, the role of interfaces become increasingly important. Because of its nanothickness, the conventional characterization and design parameters like elastic constants, stress and strains are not reliable… More >

  • Open Access

    ARTICLE

    Discrete Modelling of Capillary Mechanisms in Multi-Phase Granular Media

    L. Scholtès1, B. Chareyre2, F.Nicot3, F. Darve4

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 297-318, 2009, DOI:10.3970/cmes.2009.052.297

    Abstract A numerical study of multi-phase granular materials based upon micro-mechanical modelling is proposed. Discrete element simulations are used to investigate capillary induced effects on the friction properties of a granular assembly in the pendular regime. Capillary forces are described at the local scale through the Young-Laplace equation and are superimposed to the standard dry particle interaction usually well simulated through an elastic-plastic relationship. Both effects of the pressure difference between liquid and gas phases and of the surface tension at the interface are integrated into the interaction model. Hydraulic hysteresis is accounted for based on the possible mechanism of formation… More >

  • Open Access

    ABSTRACT

    Face stability of shallow shield tunnels in dry sandy ground: model tests, discrete element method simulations and theoretical model

    Renpeng Chen, Linggang kong, Lvjun Tang, Yunmin Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 99-100, 2011, DOI:10.3970/icces.2011.020.099

    Abstract Face stability is critical in the underground tunneling. In this report, large-scale model tests on the face stability of shallow tunnels for various cover depths (C/D = 0.5, 1, and 2) in dry sandy ground were firstly introduced. Then, a series of three-dimensional DEM models were built to simulated the process of tunnel face failure. The results of the model tests and DEM simulations reveal that a chimney like failure zone appears during the tunnel face failure. It was founded that with the increase of the horizontal displacement of the tunnel face, the support pressure decreases to the limit support… More >

  • Open Access

    ABSTRACT

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Impact Problems

    Li Shan, Ming Cheng, Kaixin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.019.087

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is estabilished for modeling the elastoplastic behavior of solid materials. A failure criterion is introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from continuum to discontinuum. In addition, a meshless interpolation… More >

  • Open Access

    ABSTRACT

    Sampling-reconstruction procedure of discrete Markov processes with continuous time

    Yu.A. Goritskiy1, V.A. Kazakov2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 63-64, 2010, DOI:10.3970/icces.2010.014.063

    Abstract At the first time the statistical description of the Sampling-Reconstruction Procedure (SRP) of Discrete Markov Processes (Markov chains) with continuous time and with an arbitrary number of states is given. The mathematical models of Markov chains with continuous time are intensively used in the description of some real stochastic processes with jumps (in control systems and radio engineering), for instance, impulse noise [1, 2]. This is the reason that it is necessary to know: how to sample, how to reconstruct and how to calculate the reconstruction errors of such processes. (Jumps can be occurred in continuous time moments.) So, the… More >

  • Open Access

    ABSTRACT

    Discrete Simulation of Particle Separation in Microfluid due to SSAW

    Wenjing Yang*, Peijin Liu, Qiang Li, Guoqiang He

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 100-100, 2019, DOI:10.32604/icces.2019.05495

    Abstract Particle manipulation due to SSAW has been spread widely in many lab-on-a-ship applications such as flow cytometry, single molecular detection, protein folding, cell sorting and enzymatic kinetics. For microflow, particle separation can be quite difficult, since the laminar nature of microfluidic flow predominantly determines the particle motion following the fixed streamlines. Thus the lateral forces are necessary to change the original path of particles, involving hydrodynamic force, electro-kinetic force, dielectrophoresis force and acoustic force. To date, the standing surface acoustic wave (SSAW) shows the unique abilities in separating particles in micro-channel. Based on particle size, density and shape, with proper… More >

  • Open Access

    ABSTRACT

    Flow Characteristics of Non-Spherical Particles Simulated with Super-Quadric DEM

    Shunying Ji*, Siqiang Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 94-94, 2019, DOI:10.32604/icces.2019.04805

    Abstract Granular flow is commonly encountered in industry or nature, and is significantly affected by particle shapes. Super-quadric particles which can construct the geometric shape of irregular particles are simulated by the Discrete Element Method (DEM). In this study, the influence of aspect ratio and blockiness of particles on the flow characteristics is investigated, and the different discharge angles are used for different shaped particles to show the superposed effect of hopper configuration. Meanwhile, the Lacey mixing index is used to explore the effects of particle shapes on the mixing and motion of the granular system in a horizontal rotating drum.… More >

  • Open Access

    ARTICLE

    Multiscale Hybrid-Mixed Finite Element Method for Flow Simulation in Fractured Porous Media

    Philippe Devloo1, Wenchao Teng2, Chen-Song Zhang3,∗

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 145-163, 2019, DOI:10.32604/cmes.2019.04812

    Abstract The multiscale hybrid-mixed (MHM) method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures. The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the discrete fractures are approximated using mixed finite elements. The coupling of the two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation of fluid transfer between the fracture flow and the divergence of the one-dimensional fracture flux. A zero-dimensional pressure (point element) is used to express conservation of mass where fractures… More >

Displaying 111-120 on page 12 of 171. Per Page