Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (202)
  • Open Access

    ARTICLE

    A Novel Binary Firey Algorithm for the Minimum Labeling Spanning Tree Problem

    Mugang Lin1,2,*, Fangju Liu3, Huihuang Zhao1,2, Jianzhen Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 197-214, 2020, DOI:10.32604/cmes.2020.09502 - 18 September 2020

    Abstract Given a connected undirected graph G whose edges are labeled, the minimum labeling spanning tree (MLST) problem is to find a spanning tree of G with the smallest number of different labels. The MLST is an NP-hard combinatorial optimization problem, which is widely applied in communication networks, multimodal transportation networks, and data compression. Some approximation algorithms and heuristics algorithms have been proposed for the problem. Firey algorithm is a new meta-heuristic algorithm. Because of its simplicity and easy implementation, it has been successfully applied in various fields. However, the basic firefly algorithm for the MLST problem More >

  • Open Access

    ARTICLE

    Multi Level Key Exchange and Encryption Protocol for Internet of Things (IoT)

    Poomagal C T1,∗, Sathish kumar G A2, Deval Mehta3

    Computer Systems Science and Engineering, Vol.35, No.1, pp. 51-63, 2020, DOI:10.32604/csse.2020.35.051

    Abstract The burgeoning network communications for multiple applications such as commercial, IoT, consumer devices, space, military, and telecommunications are facing many security and privacy challenges. Over the past decade, the Internet of Things (IoT) has been a focus of study. Security and privacy are the most important problems for IoT applications and are still facing huge difficulties. To promote this high-security IoT domain and prevent security attacks from unauthorized users, keys are frequently exchanged through a public key exchange algorithm. This paper introduces a novel algorithm based on Elliptic Curve Cryptography(ECC) for multi-level Public Key Exchange More >

  • Open Access

    ARTICLE

    Quantum Hierarchical Agglomerative Clustering Based on One Dimension Discrete Quantum Walk with Single-Point Phase Defects

    Gongde Guo1, Kai Yu1, Hui Wang2, Song Lin1, *, Yongzhen Xu1, Xiaofeng Chen3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1397-1409, 2020, DOI:10.32604/cmc.2020.011399 - 20 August 2020

    Abstract As an important branch of machine learning, clustering analysis is widely used in some fields, e.g., image pattern recognition, social network analysis, information security, and so on. In this paper, we consider the designing of clustering algorithm in quantum scenario, and propose a quantum hierarchical agglomerative clustering algorithm, which is based on one dimension discrete quantum walk with single-point phase defects. In the proposed algorithm, two nonclassical characters of this kind of quantum walk, localization and ballistic effects, are exploited. At first, each data point is viewed as a particle and performed this kind of… More >

  • Open Access

    ARTICLE

    Discrete Wavelet Transmission and Modified PSO with ACO Based Feed Forward Neural Network Model for Brain Tumour Detection

    Machiraju Jayalakshmi1, *, S. Nagaraja Rao2

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1081-1096, 2020, DOI:10.32604/cmc.2020.011710 - 20 August 2020

    Abstract In recent years, the development in the field of computer-aided diagnosis (CAD) has increased rapidly. Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images. The existing algorithms have drawbacks with respect to their accuracy, efficiency, and limited learning processes. To address these issues, we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast, 2D- discrete wavelet transformation (2D-DWT) to extract the features, probabilistic principal component analysis (PPCA) and linear discriminant analysis (LDA) to normalize and reduce the features, and More >

  • Open Access

    ARTICLE

    Study on a Dual Embedded Discrete Fracture Model for Fluid Flow in Fractured Porous Media

    Heng Zhang1, Tingyu Li2, Dongxu Han1, *, Daobing Wang1, Dongliang Sun1, Bo Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 5-21, 2020, DOI:10.32604/cmes.2020.09290 - 19 June 2020

    Abstract Simulation of fluid flow in the fractured porous media is very important and challenging. Researchers have developed some models for fractured porous media. With the development of related research in recent years, the prospect of embedded discrete fracture model (EDFM) is more and more bright. However, since the size of the fractures in the actual reservoir varies greatly, a very fine grid should be used which leads to a huge burden to the computing resources. To address this challenge, in the present paper, an upscaling based model is proposed. In this model, the flow in More >

  • Open Access

    ARTICLE

    Discrete Circular Distributions with Applications to Shared Orthologs of Paired Circular Genomes

    Tomoaki Imoto1, *, Grace S. Shieh2, *, Kunio Shimizu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1131-1149, 2020, DOI:10.32604/cmes.2020.08466 - 28 May 2020

    Abstract For structural comparisons of paired prokaryotic genomes, an important topic in synthetic and evolutionary biology, the locations of shared orthologous genes (henceforth orthologs) are observed as binned data. This and other data, e.g., wind directions recorded at monitoring sites and intensive care unit arrival times on the 24-hour clock, are counted in binned circular arcs, thus modeling them by discrete circular distributions (DCDs) is required. We propose a novel method to construct a DCD from a base continuous circular distribution (CCD). The probability mass function is defined to take the normalized values of the probability… More >

  • Open Access

    ARTICLE

    A Discrete Model of TB Dynamics in Khyber Pakhtunkhwa-Pakistan

    Muhammad Altaf Khan1,*, Khanadan Khan2, Mohammad A. Safi3, Mahmoud H. DarAssi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 777-795, 2020, DOI:10.32604/cmes.2020.08208 - 01 May 2020

    Abstract The present paper investigates the theoretical analysis of the tuberculosis (TB) model in the discrete-time case. The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa between 2002 and 2017. The model is parameterized and the basic reproduction number is obtained and it is found R0 ¼ 1:5853. The stability analysis for the model is presented and it is shown that the discrete-time tuberculosis model is stable at the disease-free equilibrium whenever R0 < 1 and further we establish the results for the endemic equilibria and prove that the model More >

  • Open Access

    ARTICLE

    Identification of the Discrete Element Model Parameters for Rock-Like Brittle Materials

    Rui Chen1, 2, Yong Wang1, 2, Ruitao Peng1, 2, *, Shengqiang Jiang1, 2, Congfang Hu1, 2, Ziheng Zhao1, 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 717-737, 2020, DOI:10.32604/cmes.2020.07438 - 01 May 2020

    Abstract An inverse method for parameters identification of discrete element model combined with experiment is proposed. The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses. In this method, the discrete element method is employed as numerical calculator for the forward problem. Then, the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis. In addition, to improve the computational efficiency, the approximate model technique is used to replace the actual computational model. The intergeneration projection genetic algorithm More >

  • Open Access

    ARTICLE

    Numerical Modelling of Proppant Transport in Hydraulic Fractures

    Yatin Suri1, Sheikh Zahidul Islam1, *, Mamdud Hossain1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 297-337, 2020, DOI:10.32604/fdmp.2020.08421 - 21 April 2020

    Abstract The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is considerably different from fracturing fluids in the conventional reservoir due to the very low viscosity and quick deposition of the proppants. This paper presents the development of a threedimensional Computational Fluid Dynamics (CFD) modelling technique for the prediction of proppant-fluid multiphase flow in hydraulic fractures. The proposed model also simulates the fluid leak-off behaviour from the fracture wall. The Euler-Granular and CFD-Discrete Element… More >

  • Open Access

    ARTICLE

    Stability and Bifurcation Analysis of a Discrete Predator-Prey Model with Mixed Holling Interaction

    M. F. Elettreby1, 2, *, Tamer Nabil1, 3, A. Khawagi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 907-921, 2020, DOI:10.32604/cmes.2020.08664 - 01 March 2020

    Abstract In this paper, a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III. The equilibrium points of the model are obtained, and their stability is tested. The dynamical behavior of this model is studied according to the change of the control parameters. We find that the complex dynamical behavior extends from a stable state to chaotic attractors. Finally, the analytical results are clarified by some numerical simulations. More >

Displaying 121-130 on page 13 of 202. Per Page