Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (190)
  • Open Access

    CORRECTION

    Erratum to: "Finite Element Analysis of Discrete Circular Dislocations" [CMES, vol. 60, no. 2, pp. 181-198, 2010]

    K.P. Baxevanakis1, A.E. Giannakopoulos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.6, pp. 535-544, 2014, DOI:10.3970/cmes.2014.097.535

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Novel Iterative Algorithms Based on Regularization Total Least Squares for Solving the Numerical Solution of Discrete Fredholm Integral Equation

    Zichun Yang1,2,3, Lei Zhang1,4, Yueyun Cao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.2, pp. 101-130, 2014, DOI:10.3970/cmes.2014.097.101

    Abstract Discretization of inverse problems often leads to systems of linear equations with a highly ill-conditioned coefficient matrix. To find meaningful solutions of such systems, one kind of prevailing and representative approaches is the so-called regularized total least squares (TLS) method when both the system matrix and the observation term are contaminated by some noises. We will survey two such regularization methods in the TLS setting. One is the iterative truncated TLS (TTLS) method which can solve a convergent sequence of projected linear systems generated by Lanczos bidiagonalization. The other one is to convert the Tikhonov… More >

  • Open Access

    ARTICLE

    A Fully Discrete SCNFVE Formulation for the Non-stationary Navier-Stokes Equations

    Zhendong Luo1, Fei Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.1, pp. 33-58, 2014, DOI:10.3970/cmes.2014.101.033

    Abstract A semi-discrete Crank-Nicolson (CN) formulation about time and a fully discrete stabilized CN finite volume element (SCNFVE) formulation based on two local Gauss integrals and parameter-free with the second-order time accuracy are established for the non-stationary Navier-Stokes equations. The error estimates of the semi-discrete and fully discrete SCNFVE solutions are derived. Some numerical experiments are presented to illustrate that the fully discrete SCNFVE formulation possesses more advantages than its stabilized finite volume element formulation with the first-order time accuracy, thus validating that the fully discrete SCNFVE formulation is feasible and efficient for finding the numerical More >

  • Open Access

    ARTICLE

    A Multi-continuum Method for Studying the Effect of Inactive Fractures on Solute Transport in 2-D Discrete Fracture Network

    Zhen Wang1, Jonny Rutqvist2, Ying Dai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 539-556, 2013, DOI:10.3970/cmes.2013.092.539

    Abstract Fractures in a discrete fracture network can be divided into two parts: Active fractures, which form a connected fracture network and dominate fluid flow and solute transport; and inactive fractures, which are dead-end parts of the fractures (isolated fractures will be incorporated into rock matrix) and do not contribute significantly to the fluid flow, but maybe important for the solute transport, especially for rock matrix diffusion. We present a multi-continuum method (including active fracture continuum, inactive fracture continuum and matrix continuum), which is based on the “multiple interacting continua” method, to describe fluid flow and… More >

  • Open Access

    ARTICLE

    Application of the Time-Domain Boundary Element Method to Analysis of Flow-Acoustic Interaction in a Hole-tone Feedback System with a Tailpipe

    Mikael A. Langthjem1, Masami Nakano2

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 227-241, 2013, DOI:10.3970/cmes.2013.096.227

    Abstract This paper is concerned with a mathematical model of a simple axisymmetric silencer-like model, consisting of a hole-tone feedback system equipped with a tailpipe. The unstable shear layer is modeled via a discrete vortex method, based on axisymmetric vortex rings. The aeroacoustic model is based on the Powell- Howe theory of vortex sound. Boundary integrals are discretized via the boundary element method; but the tailpipe is represented by the exact (one-dimensional) solution. It is demonstrated though numerical examples that this numerical model can display lock-in of the self-sustained flow oscillations to the resonant acoustic oscillations. More >

  • Open Access

    ARTICLE

    The Cell Method: Quadratic Interpolation with Tetrahedra for 3D Scalar Fields

    Martino Pani1, Fulvia Taddei1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.4, pp. 279-300, 2013, DOI:10.3970/cmes.2013.094.279

    Abstract The Cell Method (CM) is a numerical method to solve field equations starting from its direct algebraic formulation. For two-dimensional problems it has been demonstrated that using simplicial elements with an affine interpolation, the CM obtains the same fundamental equation of the Finite Element Method (FEM); using the quadratic interpolation functions, the fundamental equation differs depending on how the dual cell is defined. In spite of that, the CM can still provide the same convergence rate obtainable with the FEM. Particularly, adopting a uniform triangulation and basing the dual cells on the Gauss points of More >

  • Open Access

    ARTICLE

    Heat Transfer and Entropy Analysis for Mixed Convection in a Discretely Heated Porous Square Cavity

    A. Maougal1, R. Bessaïh2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 35-59, 2013, DOI:10.3970/fdmp.2013.009.035

    Abstract The present study is a numerical investigation of the irreversibility and heat transfer properties of a steady laminar mixed flow in a square cavity, filled with a saturated porous medium and heated by a discrete set of heat sources. The continuity, Navier-Stokes, energy and entropy generation equations have been solved by a finite volume method. Both heat transfer irreversibility and fluid friction irreversibility have been taken into account in the computations of entropy generation. Simulations have bee carried out for Reynolds number Re=20, 40, 80, 100, 200, Darcy number, Da=10-5-10-1, Prandtl number, Pr=0.015, 0.7, 10, 103, More >

  • Open Access

    ARTICLE

    A Direct Integral Equation Method for a Cauchy Problem for the Laplace Equation in 3-Dimensional Semi-Infinite Domains

    Roman Chapko1, B. Tomas Johansson2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 105-128, 2012, DOI:10.3970/cmes.2012.085.105

    Abstract We consider a Cauchy problem for the Laplace equation in a 3-dimen -sional semi-infinite domain that contains a bounded inclusion. The canonical situation is the upper half-space in I\tmspace -.1667em R3 containing a bounded smooth domain. The function value of the solution is specified throughout the plane bounding the upper half-space, and the normal derivative is given only on a finite portion of this plane. The aim is to reconstruct the solution on the surface of the bounded inclusion. This is a generalisation of the situation in Chapko and Johansson (2008) to three-dimensions and with… More >

  • Open Access

    ARTICLE

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Continuum/Discontinuum Transformation

    Li Shan, Ning Cui, Ming Cheng, Kaixin Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 353-384, 2012, DOI:10.3970/cmes.2012.083.353

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is established for modeling the elastoplastic behavior of solid materials. Failure criteria are introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from a continuum to a More >

  • Open Access

    ARTICLE

    Large Rotation Analyses of Plate/Shell Structures Based on the Primal Variational Principle and a Fully Nonlinear Theory in the Updated Lagrangian Co-Rotational Reference Frame

    Y.C. Cai1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 249-274, 2012, DOI:10.3970/cmes.2012.083.249

    Abstract This paper presents a very simple finite element method for geometrically nonlinear large rotation analyses of plate/shell structures comprising of thin members. A fully nonlinear theory of deformation is employed in the updated Lagrangian reference frame of each plate element, to account for bending, stretching and torsion of each element. An assumed displacement approach, based on the Discrete Kirchhoff Theory (DKT) over each element, is employed to derive an explicit expression for the (18x18) symmetric tangent stiffness matrix of the plate element in the co-rotational reference frame. The finite rotation of the updated Lagrangian reference… More >

Displaying 141-150 on page 15 of 190. Per Page